
Dual-Arm Grasp Detection of Chairs

Philipp Badenhoop

1 Introduction

In the field of robotics, we ubiquitously encounter prob-
lems that are easy for humans but turn out to be hard
to implement on machines. Teaching robots grasping
skills is a complex challenge as it typically involves to
develop robust perception, planning and control algo-
rithms. During the last years, the task of autonomous
bin-picking has received a lot of attention [9] [8]. The
general goal is to train a robot to move small objects
from one container to another using a single gripper.
While these robots already achieve promising success
rates, they are only limited to single-arm manipulation.

In this paper, we address the problem of grasping
large objects with multiple arms. In particular, we con-
centrate on the goal of detecting grasp poses for novel
objects, but of familiar category, namely chairs. Chairs
have a number of interesting properties to consider for
research. First, they cannot be efficiently manipulated
with only one arm in most cases. Secondly, for each
arm, we have to find 6D gripper poses. This differs in
complexity to typical bin-picking tasks where it is often
enough to work in a planar space. Thirdly, chairs can
be grasped in a number of different ways. Our goal is
on the one hand to yield grasps with physically plausi-
ble stability and on the other hand to find those grasps
that can be reached most efficiently by the robot arms.
Finally, we aim for a method that avoids the need for
tedious labeling as it is often required for deep learning
applications. Our proposed multi-arm grasp detection
algorithm addresses all of these aspects.

In this work, we evaluate our method purely in sim-
ulations using Gazebo [7] and ROS [17]. Our task setup

Author
University
E-mail: email

is depicted in Figure 1. There are two Universal Robot
UR10 industrial robot manipulators [2] with attached
Robotiq 2f 140 dual-jaw grippers [1] that are placed di-
agonally with respect to the world frame. Two Kinect
depth cameras are located along the other diagonal and
the coordinate transformations between the camera and
the robots are known. The goal is to detect the 6D grip-
per poses for each arm such that the robots can lift the
chair off the ground. While it is also important to de-
velop suitable planning algorithms to move the object
to a desired position on a collision-free path, this work
only focuses on the perception problem.

Fig. 1: The task of grasping a chair using two industrial
robot manipulators with dual-jaw grippers, two Kinect
depth cameras and known coordinate transformations.

This paper is organized as follows: Section 2 presents
related work. Section 3 describes our approach while
Section 4, the experiments and results. Finally, discus-
sion and conclusions are given in Section 5.

2 Philipp Badenhoop

2 Related Work

There has been extensive research in the field of robot
grasping over the last decades. A large number of con-
tributions have been devoted to the task of bin-picking.
Its simple setup of using a camera to capture small
objects on a flat surface makes this problem especially
applicable for Deep Learning and Reinforcement Learn-
ing approaches. Instead of manually annotating grasp
poses on images, more recent works perform data collec-
tion by letting either simulated or real robots execute a
large number of grasp trials [8] [9]. Although these ap-
proaches yield promising results, the training procedure
requires a huge amount of time and resources. Further-
more, it is not clear how to translate these methods to
more general, full 6D grasp pose detection systems yet.

In the domain of dual-arm grasping, research has
mainly focused on the bimanual planning problem [18]
[15] [16]. However, quite recently, there has been more
effort towards the perception and detection part. Ex-
citing work in the field of humanoid dual-arm grasping
of familiar objects has been done by Pavlichenko et al.
[12]. The authors employ latent non-rigid shape regis-
tration to obtain functional grasp descriptors for the
first hand and sample supporting grasp poses for the
second hand using Dexterity Network [12]. While the
proposed method is able to learn shape related features
to infer the functional grasp descriptor, it only allows
for a single functional grasp per object category. This
makes it only suboptimal for manipulating larger ob-
jects that can be grasped in a variety of different ways.
Furthermore, in order to train the linear regressor that
maps the latent representation of the deformation field
to a grasp descriptor, it needs multiple 3D models, each
annotated with 6D finger poses for a given object cate-
gory and its functional grasp. It is not made clear how
to obtain these labels.

3 Methodology

Our proposed method for detecting grasp poses for dual-
arm manipulation is depicted in Figure 2. Based on
the analysis of Bohg et al. [3] on existing grasp detec-
tion systems, one can describe the algorithm as a data-
driven approach which is split into an offline and an
online phase. In the offline phase, the goal is to create
a database of grasp experience for a set of 3D example
models given as meshes and point clouds. For each such
model, we sample tool center point (TCP) poses from
the model’s point cloud that have a high likelihood of
being a valid single arm grasp. We refer to this process
as grasp hypothesis sampling. Next, we filter out those
grasp hypotheses that directly result in a collision state

Preprocessing/
Segmentation Matching

Non-rigid
Registration

Mesh
Reconstruction

Grasp Simulation

Grasp Synthesis

Grasp Hypotheses
Sampling Grasp Synthesis

Grasp
Database

Grasp Simulation

Offline
Online

3D Models

Motion Planner

Observed Point Cloud

Grasp
Transformation

Grasp Execution

Fig. 2: The proposed pipeline divided into an offline and
an online phase. In the offline phase, pairs of sampled
and simulated single-arm grasp hypotheses are ranked
based on a grasp quality metric before they are stored
inside a grasp database. During the online phase, the
object of interest is segmented from the scene point
cloud and matched with the models of the database.
The matched database model is warped to obtain a
deformation field that is used to transform the stored
grasps into the observed space where they are simu-
lated on the reconstructed mesh. Finally, the grasps are
ranked according to grasp quality and reachability and
the best candidate is chosen for execution.

between the 3D gripper model of the manipulator in
the opened state and the model’s mesh. Then, at each
filtered pose, a grasp is simulated by closing each of
the gripper’s fingers individually until contact with the
object has been made. This way we obtain the con-
tact normals which are used to compute grasp quality
metrics during grasp synthesis. Grasp synthesis is the
process of ranking all pairs of grasp hypotheses in order
to select the best 𝑛 dual-arm grasps which are finally
stored inside the grasp database.

During the online phase, we first combine, prepro-
cess and segment the observed point clouds from the
depth cameras to retrieve the points of the object of
interest. The obtained cloud is matched against the
clouds of the database models to find the model that
is most similar to the observed one. Now, we warp the
model point cloud to align with the segmented cloud
by performing non-rigid registration. This allows us to
reconstruct the mesh from the registered cloud and
transform the grasps stored inside the database into

Dual-Arm Grasp Detection of Chairs 3

the observed space. Similarly to the offline phase, the
transformed grasps are run through the grasp simula-
tor and ranked by grasp quality and reachability. The
best grasp candidate is sent to the motion planner for
execution on the robots.

We like to note that we mentioned the matching
phase only for the sake of completeness as we did not
actually implemented it in this work. In the following,
we will explain all other individual steps in the proposed
pipeline in more detail.

3.1 Grasp Hypothesis Sampling

gripper

object

TCP

y
z

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑛𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙

𝑛𝑝𝑎𝑙𝑚

Fig. 3: Sketch of the idea behind grasp hypothesis sam-
pling. For a given sampled point there must exists an
antipodal and a palm point in a local neighborhood
which have to satisfy certain positional and angular
constraints.

We strive to find a mechanism that allows us to effi-
ciently sample TCP poses that result in valid grasps on
a model in our database. For a given uniformly sampled
point 𝑥𝑠𝑎𝑚𝑝𝑙𝑒 of the model’s point cloud, we use very
basic geometric assumptions of the dual-jaw gripper’s
shape such that we can either reject the sampled point
or quickly evaluate a suitable TCP position and orien-
tation from the local neighborhood of points. This idea
is made clear in Figure 3. If we consider 𝑥𝑠𝑎𝑚𝑝𝑙𝑒 as the
contact point where one of the gripper pads touches
the object, then there must exist an antipodal point
𝑥𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙 whose distance is less than the distance be-
tween the gripper pads 𝑑. Furthermore, the angle be-
tween the normals 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑛𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙 should ideally
be 180∘. The midpoint between 𝑥𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑥𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙

defines the position of the TCP. Next, we find a third
point 𝑥𝑝𝑎𝑙𝑚 that is located near the gripper’s palm. The
distance between the TCP position and 𝑥𝑝𝑎𝑙𝑚 must be
less than the gripper’s pad length 𝑙 and the angle be-
tween 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑛𝑝𝑎𝑙𝑚 should ideally be 90∘. Finally,

Algorithm 1: Grasp Hypothesis Sampling
Input : Point cloud with normals: 𝒳
Input : Position and normal of the sampled point:

𝑥𝑠𝑎𝑚𝑝𝑙𝑒, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒

Input : Gripper pad distance: 𝑑
Input : Gripper pad length: 𝑙
Input : Angle thresholds: 𝜑, 𝜓, 𝛾
Output: TCP position 𝑝 ∈ R3 and orientation given

as rotation matrix 𝑅 ∈ R3×3 or REJECT
𝑥𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙 ← argmin𝑥{

𝜋 − ∠(𝑛𝑠𝑎𝑚𝑝𝑙𝑒,𝑛) + ∠(𝑛𝑠𝑎𝑚𝑝𝑙𝑒,𝑥𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑥)
| (𝑥,𝑛) ∈ 𝒳
∧ ‖𝑥𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑥‖ < 𝑑
∧ ∠(𝑛𝑠𝑎𝑚𝑝𝑙𝑒,𝑛) ≥ 𝜑
∧ ∠(𝑛𝑠𝑎𝑚𝑝𝑙𝑒,𝑥𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑥) ≤ 𝜓}

if 𝑥𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙 does not exist then
return REJECT

end
𝑥𝑝𝑎𝑙𝑚 ← argmin𝑥{

1
𝜋/2
|𝜋/2− ∠(𝑛𝑠𝑎𝑚𝑝𝑙𝑒,𝑛)|+ 1

𝑙
‖𝑥𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑥‖

| (𝑥,𝑛) ∈ 𝒳
∧ ‖𝑥𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑥‖ < 𝑙
∧ |𝜋/2− ∠(𝑛𝑠𝑎𝑚𝑝𝑙𝑒,𝑛)| ≤ 𝛾}

if 𝑥𝑝𝑎𝑙𝑚 does not exist then
return REJECT

end
𝑝← 1

2
(𝑥𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑥𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙)

𝑟𝑦 ← 𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑟𝑧 ←
−𝑛𝑝𝑎𝑙𝑚−𝜋𝑛𝑠𝑎𝑚𝑝𝑙𝑒

(−𝑛𝑝𝑎𝑙𝑚)

‖−𝑛𝑝𝑎𝑙𝑚−𝜋𝑛𝑠𝑎𝑚𝑝𝑙𝑒
(−𝑛𝑝𝑎𝑙𝑚)‖

𝑟𝑥 ← 𝑟𝑦 × 𝑟𝑧
𝑅←

(︀
𝑟𝑥 𝑟𝑦 𝑟𝑧

)︀
return 𝑝, 𝑅

Fig. 4: The grasp hypothesis sampling algorithm. Given
a sampled point from a point cloud the algorithm either
rejects the sample or outputs a TCP pose based on the
found antipodal and palm points.

the y-axis of the TCP frame is given by 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 and
the z-axis is defined as

𝑟𝑧 =
−𝑛𝑝𝑎𝑙𝑚 − 𝜋𝑛𝑠𝑎𝑚𝑝𝑙𝑒

(−𝑛𝑝𝑎𝑙𝑚)

‖ − 𝑛𝑝𝑎𝑙𝑚 − 𝜋𝑛𝑠𝑎𝑚𝑝𝑙𝑒
(−𝑛𝑝𝑎𝑙𝑚)‖

where 𝜋𝑢(𝑣) is the projection of 𝑣 onto 𝑢. The com-
plete algorithm to determine the TCP pose based on
the sampled, antipodal and palm points is given in Fig-
ure 4.

We like to point out that the given constraints cer-
tainly do not guarantee a collision free grasp and there-
fore it is essential to still perform real collision checking
on successful completion of the algorithm. Furthermore,
it should be mentioned that this method may not work
well on arbitrary objects but turns out to be very prac-
tical when applied to chair models.

4 Philipp Badenhoop

𝑓⊥𝑓𝑡

𝑓

(a)

𝑓7

𝑓8 𝑓1
𝑓2

𝑓3

(b)

Fig. 5: For any given contact, in order to prevent slip-
page, the magnitude of force that is acting along the
tangential plane ‖𝑓𝑡‖ must be less or equal the mag-
nitude of the contact normal force times the friction
coefficient 𝜇‖𝑓⊥‖. Hence, the combined contact force 𝑓

has to lie inside a friction cone as depicted in (a). This
cone is approximated with an 𝑚 sided pyramid (b).

3.2 Grasp Synthesis

In order to obtain dual-arm grasps, we simply com-
bine pairs of grasp hypotheses which we also refer to
as grasp candidates. The grasp synthesizer first creates
all possible pairs of hypotheses that survived the colli-
sion checking and grasp simulation steps. Consequently,
the run-time complexity of this process is 𝒪(𝑁2) where
𝑁 is the number of remaining grasp hypotheses. Then,
each candidate is ranked based on a weighted sum of
quality and reachability metrics though reachability is
only considered during the online phase.

In the offline phase, we output the best 𝑀 candi-
dates and store them inside the grasp database. This,
however, poses a problem as candidates with almost
equal score are likely to be very similar or even the
same grasps. In contrast to that, one of our main goals
was to be able to grasp the same object in multiple
ways. Therefore, we perform non-maximum suppression
on the set of ranked candidates to filter out groups of
grasps that are similar in terms of position and orien-
tation and only keep each group’s best candidate.

3.3 Grasp Analysis

In our analysis, a grasp is solely defined by the set of
contacts between the surface of the object and the grip-
pers’ fingers. The applied forces and torques at each
contact are determined using the hard finger contacts
model with friction [4] where we consider exactly one
contact per finger. We reject grasps that do not satisfy
the force closure property and evaluate the 𝑣1 quality

measure proposed by Ferrari and Canny [6]. In the fol-
lowing, we briefly explain the employed concepts.

3.3.1 Contact Model

At each contact, a finger exerts a force 𝑓⊥ to the object
that is perpendicular to the contact surface. According
to Coulomb’s law, slippage of the contact is prevented
if the tangentially acting force component 𝑓𝑡 satisfies

‖𝑓𝑡‖ ≤ 𝜇‖𝑓⊥‖ (1)

where 𝜇 is the friction coefficient. Given three-dimensional
forces, the constraint is represented as a friction cone
as illustrated in Figure 5(a). For computational rea-
sons, the cone is often approximated with an 𝑚-sided
pyramid [10], seen in Figure 5(b) (in our case, we use
𝑚 = 8). By doing so, the combined force 𝑓 that is act-
ing at the contact has to be represented as a convex
combination of the 𝑚 boundary vectors of the pyramid
to prevent slippage.

3.3.2 Grasp Wrench Space

To examine grasp stability, we are interested in answer-
ing the question of which forces and torques a particular
grasp can apply to compensate any potential distur-
bances made to the object. A common way of deriving
grasp metrics is by analysing the grasp wrench space
(GWS) [10].

A wrench combines both 3-D force and 3-D torque
into a single 6-D vector. Now, for each force vector 𝑓𝑖,𝑗

of the the pyramid that approximates the friction cone
of contact 𝑖, we can define a corresponding wrench

𝑤𝑖,𝑗 =

[︂
𝑓𝑖,𝑗

𝜆(𝑑𝑖 × 𝑓𝑖,𝑗)

]︂
where 𝑑𝑖 is the vector going from the object’s center of
gravity to the contact point. Furthermore, we set 𝜆 = 1

𝑟

with 𝑟 being the maximum radius of the object from
its center of gravity. The rational behind 𝜆 is that it
relates units of torques to units of forces. In addition, we
assume unit normal forces at each contact to compute
𝑓𝑖,𝑗 .

Using these wrenches, we can build the space of
wrenches 𝑊𝐿1 that can be applied to the object given
that the contact normal force magnitudes maximally
sum up to one:

𝑊𝐿1 =

{︃
𝑤

⃒⃒⃒⃒
⃒ 𝑤 =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛼𝑖,𝑗𝑤𝑖,𝑗

∧
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝛼𝑖,𝑗 ≤ 1 ∧ 𝛼𝑖,𝑗 ≥ 0

}︃
. (2)

Dual-Arm Grasp Detection of Chairs 5

This is one of the definitions of the grasp wrench space
that Ferrari and Canny [6] proposed. The second defi-
nition is the 𝑊𝐿∞ space which assumes that the mag-
nitude of each individual contact normal force is less or
equal to one. Despite being more intuitive, we opt for
the 𝑊𝐿1

version because it can be built efficiently by
computing the convex hull of the wrenches 𝑤𝑖,𝑗

𝑊𝐿1
≡ 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙

(︃
𝑛⋃︁

𝑖=1

(𝑤𝑖,1, . . . ,𝑤𝑖,𝑚)

)︃
. (3)

3.3.3 Force Closure

Until now, we established a way to determine which
wrenches a given grasp can generate to balance poten-
tial external wrenches such as gravity while imposing
limits on the contact normal forces. A natural question
arises: Can a grasp support wrenches in all directions
of the R6? If this can be answered positively, the grasp
is said to be in force closure [10]. This property can be
easily verified as it is equivalent to checking whether
the origin is strictly contained inside the convex hull
of the GWS. Hence, a given grasp is in force closure if
every hyperperplane that encloses the convex hull has
a negative offset.

3.3.4 Grasp Quality Measures

The epsilon measure 𝜖1 is a widely adopted metric for
ranking force closure grasps based on their ability to
resist arbitrary external wrenches [3]. In particular, it
represents the radius of the R6 ball that just fits inside
the GWS. Thus, it is the magnitude of the wrench that
resists the worst possible disturbance wrench given that
the sum of magnitude of all normal forces is exactly one.
One can easily compute 𝜖1 as it is the absolute offset of
the hyperplane that is closest to the wrench origin.

Unfortunately, we found that this quality is rather
agnostic to where the grippers are positioned relative
to each other. This means that it is possible to have
a high epsilon score even if one hand is quite near to
the other one or both are grasping at the same side of
the object. Therefore, we decided to use the 𝑣1 measure
which is the volume of the convex hull [10]. Based on
our experiments, this metric gives much more plausible
grasps. While it still happens that the 𝑣1 measure scores
high on grasps that are located on the same side of the
chair, it leads to a better spread of the grippers.

Nevertheless, we decided to augment the grasping
score with the distance between the positions of the
grasps normalized by the length of the diagonal 𝑑 of
the bounding box of the model. The combined grasp

quality 𝑄 is given as

𝑄𝑔𝑟𝑎𝑠𝑝 = 𝑤𝑣1𝑣1 + 𝑤𝑑𝑖𝑠𝑡
‖𝑝1 − 𝑝2‖

𝑑
. (4)

where 𝑝1 and 𝑝2 are the grasp positions and 𝑤𝑣1 and
𝑤𝑑𝑖𝑠𝑡 are weights to control the influence of the corre-
sponding metric.

3.4 Reachability Analysis

During the online phase, we need to consider the reach-
ability of each grasp with respect to the position of the
robot manipulators. We simply assign a grasp to the
arm that is closest to it. This of course means that
we reject grasp candidates that assign a certain pose
multiple times to the same arm. In addition to that,
we reject grasps for which the kinematics solver cannot
find a solution.

Furthermore, we employ two heuristics that favor
grasps that are easiest to reach. The first one is to pre-
fer TCP poses whose positions are closer to the assigned
manipulator’s base. Our second heuristic looks at the
angle in the x-y-plane between the vector going from
the position of the corresponding arm’s base to the po-
sition of the grasp and the z-axis of the TCP pose. The
resulting final metric for evaluating the reachability can
be stated as follows:

𝑄𝑟𝑒𝑎𝑐ℎ =
1

2

2∑︁
𝑖=1

[︃
𝑤𝑝𝑜𝑠

(︂
1− ‖𝑝𝑖 − 𝑏𝑖‖

𝑟

)︂

+ 𝑤𝑎𝑛𝑔

(︂
1− ∠𝑥𝑦 (𝑝𝑖 − 𝑏𝑖,𝑅𝑖,𝑧)

𝜑

)︂]︃
(5)

where 𝑏𝑖 is the base position of the arm that is assigned
to grasp 𝑖, 𝑅𝑖,𝑧 is the direction of the z-axis of grasp
𝑖, 𝑟 is the maximum allowed distance between the base
and the TCP pose and 𝜑 is the maximum allowed angle.
The weights 𝑤𝑝𝑜𝑠 and 𝑤𝑎𝑛𝑔 determine the contribution
of the two measures.

3.5 Preprocessing and Segmentation

We now go into the details of the first part of the steps
that happen during the online phase. First, we receive
point clouds from both cameras and merge them into
a single point cloud. Then, a voxel grid filter is applied
to reduce the number of points. Next we apply a sta-
tistical outlier removal filter [14] to the downsampled
output. We now filter out the ground plane using sam-
ple consensus segmentation. Finally, we use euclidean
clustering to extract the cluster that contains the most

6 Philipp Badenhoop

points which we hypothesize to contain the object of
interest.

3.6 Non-Rigid Registration

The following shows how we transfer grasping knowl-
edge to new instances of familiar objects. To do so, the
goal is to transform a grasp given in model space into
the observed space while considering the local geomet-
ric shape of the grasped object. Therefore, we warp the
point cloud of the matched model to align with the
segmented cloud. This is achieved using the non-rigid
coherent point drift (CPD) registration algorithm pro-
posed by Myronenko and Song [11]. We briefly give an
overview of CPD and explain how we use the resulting
deformation field to transform the grasps appropriately.

3.6.1 Coherent Point Drift

CPD considers two point sets 𝑋𝑁×𝐷 = (𝑥1, . . . ,𝑥𝑁)𝑇

and 𝑌𝑀×𝐷 = (𝑦1, . . . ,𝑦𝑀)𝑇 where 𝑌 represents the
template points that should be aligned with the ob-
served data points 𝑋. The alignment problem is viewed
from a probabilistic perspective that is to represent
𝑦1, . . . ,𝑦𝑀 as the centroids of a Gaussian Mixture Model
(GMM) and 𝑥1, . . . ,𝑥𝑁 as samples drawn from it. The
objective is to estimate the GMM with maximum like-
lihood for the given data points while at the same time
making sure that the topological structure of the tem-
plate points is preserved. Especially the last part is of
importance as we want points that are close to each
other to move coherently. Minimizing the following cost
function is equivalent to maximizing the likelihood of
the GMM [13]:

𝐸(𝜃, 𝜎2) = −
𝑁∑︁

𝑛=1

log

𝑀∑︁
𝑚=1

𝑒−
1

2𝜎2 ‖𝑥𝑛−𝒯 (𝑦𝑚,𝜃)‖2

+
𝜆

2
𝜑(𝑌)

(6)

where 𝒯 (𝑦𝑚, 𝜃) is a function parameterized by 𝜃 that
transforms template points to data points. While the
first term of Equation 6 serves as a penalty on the dis-
tance between the points, the second term uses 𝜑 as a
regularizer to enforce motion coherence.

CPD defines the non-rigid transformation 𝒯 as

𝒯 (𝑌 ,𝑊) = 𝑌 +𝐺𝑊 (7)

which is the initial template point set 𝑌 plus a dis-
placement given by the matrix multiplication of a fixed
gaussian kernel matrix 𝐺𝑀×𝑀 and the estimated ker-
nel weights 𝑊𝑀×𝐷. We also refer to 𝑊 as the deforma-
tion field. The elements in 𝐺 correspond to the distance

measured between the points 𝑦𝑖 and 𝑦𝑗 using the kernel
𝒢(·, ·):

𝑔𝑖𝑗 = 𝒢(𝑦𝑖,𝑦𝑗) = exp

(︂
− 1

2𝛽2
‖𝑦𝑖 − 𝑦𝑗‖

)︂
. (8)

Note, that the parameter 𝛽 controls how much influence
points have on each other. The smaller this value, the
more interaction we have between the points.

To minimize the cost function given in Equation 6,
CPD applies an Expectation Maximization (EM) algo-
rithm. For the sake of brevity, we do not show the full
algorithm here but rather refer to the work by Myro-
nenko and Song [11] to get further insight.

3.6.2 Grasp Transformation

CPD only outputs is the deformation field 𝑊 that is
used to displace each individual template point. So how
can we actually use this matrix to transform points that
do not belong to 𝑌 ? For a new point 𝑧, we assume mo-
tion coherence with the template points that are close
to it. Thus, we use a weighted mean displacement of the
𝑘-nearest neighbors that are contained in 𝑌 to trans-
form 𝑧.

Let ℐ𝑘(𝑧) be the set of indices corresponding to the
𝑘 nearest neighbors of 𝑧 in 𝑌 . We define the transfor-
mation ℱ that maps a point from the template space
to the observed space as:

ℱ(𝑧) = 𝑧 +

∑︀
𝑖∈ℐ𝑘(𝑧)

𝒢(𝑧,𝑦𝑖)𝑊
𝑇𝑔𝑖∑︀

𝑖∈ℐ𝑘(𝑧)
𝒢(𝑧,𝑦𝑖)

(9)

where 𝑔𝑖 is the 𝑖-th row vector of the kernel matrix 𝐺.
In order to transform grasp poses, we still need to

handle orientations. Given rotation matrix 𝑅, the idea
is to warp each basis vector 𝑟𝑖 into the data space using
ℱ and orthonormalize the resulting vectors. The first
part is done by applying the following transformation
ℒ to the direction 𝑟:

ℒ(𝑟) = ℱ(𝛼𝑟 + 𝑝)−ℱ(𝑝) (10)

where 𝑝 is the position of the grasp we want to trans-
form. Here, 𝛼 determines, how far is looked into the
direction of 𝑟. As 𝑟 has a length equal to one, this pa-
rameter has to be reasonably adapted according to the
units of measure in the observed space. Finally, we or-
thonormalize in the following manner:

𝑢𝑧 = ℒ(𝑟𝑧)
𝑢𝑥 = ℒ(𝑟𝑥)− 𝜋𝑢𝑧

(ℒ(𝑟𝑥))
𝑢𝑦 = ℒ(𝑟𝑦)− 𝜋𝑢𝑧

(ℒ(𝑟𝑦))− 𝜋𝑢𝑥
(ℒ(𝑟𝑦))

𝑅𝑛𝑒𝑤 =
(︁

𝑢𝑥

‖𝑢𝑥‖
𝑢𝑦

‖𝑢𝑦‖
𝑢𝑧

‖𝑢𝑧‖

)︁
.

Note, that we give highest priority to the z-direction as
this is the main axis of the gripper.

Dual-Arm Grasp Detection of Chairs 7

3.6.3 Mesh Reconstruction

We finally discuss how we reconstruct a mesh from the
warped point cloud. One big problem with CPD is that
the gaussian kernel has 𝑀2 entries. This limits the num-
ber of points we can register as the algorithm quickly
becomes extremely slow. To resolve this issue, we first
use a voxel grid filter to reduce the number of points of
the template cloud to about 300-500. The downsampled
cloud is then used for registration. Then, we apply ℱ to
transform every point of the original template cloud in-
dividually. This approach is orders of magnitudes faster
than registering the cloud directly while still providing
enough deformation quality. For the mesh reconstruc-
tion itself, we use a greedy triangulation algorithm [5].

4 Experiments

In the following, we first evaluate the grasps that are
generated on 3D models in the offline phase and then
show experimental results on how grasping knowledge
is transferred to new instances.

4.1 Grasp Database Generation

We generated grasp databases on four different models
of different geometric complexity as seen in Figure 6. In
all experiments, we used 𝑤𝑣1 = 1.0 and 𝑤𝑑𝑖𝑠𝑡 = 0.5. The
displayed poses are taken from the best 50 grasp can-
didates returned by the grasp synthesizer. Note, that
we additionally filtered out poses whose z-coordinate is
less than 0.2 to avoid storing grasps that likely result
in collision between the manipulator and the ground.

4.1.1 Hypothesis Sampling

For sampling grasp hypotheses, we ran our proposed al-
gorithm in Figure 4 on 10’000 uniformly sampled points
from the model’s point cloud. The point clouds are cre-
ated with uniform mesh sampling and have a density of
one point per cubic millimeter. It is important to have
high point densities as we need to be able to extract the
normals that are associated with the palm directions on
thin surfaces such as leg or plate edges.

In order to evaluate our hypotheses sampling algo-
rithm, we can compare the number of samples that were
accepted, rejected due to invalid constraints or rejected
due to checked collisions. We naturally expect the vast
majority of samples to be rejected. However, the ques-
tion is how many times we can avoid expensive colli-
sion checking by observing that the antipodal and palm
point constraints are not fulfilled.

For each model in Figure 6, Figure 7 shows the num-
ber of accepted and rejected samples. Two main conclu-
sions can be drawn from this plot. First, the number of
rejections due to constraint violations is on average 7.7
times higher than the number of rejections due to col-
lision checking. For the most basic model, the method
checks for collisions in only 5% of the samples. This
number rises to 18% in the case of the desk chair but
we think that this is still a good result. Secondly, the
number of accepted grasps significantly drops with the
model’s complexity. It is a logical consequence that with
higher non-graspable surface area, sampling based ap-
proaches become more inefficient. In this regard, the
desk chair really pushes the boundaries of this method
while keeping only 1.4% of the total number of gener-
ated samples. On the other hand, more than every fifth
pose was accepted on the first chair which is quite many
considering the fact that points are sampled uniformly
across the surface of the model.

4.1.2 Grasp Synthesis

Using our grasp quality metric, we noticed that the two
gripper poses tend to be spread out as far as possible.
Figure 6(a) demonstrates this effect nicely as the grasps
on the back plate of the chair are located directly at the
corners. The grasps are mostly diagonally placed mean-
ing that for example, the first arm goes to the chair’s
top-left corner while the second one picks a position
at the front-right leg. Furthermore, the direction of the
gripper poses tend to be orthogonal instead of parallel
which is expected when using the 𝑣1 quality.

We noticed that problems may arise when grasps
are located near the intersection of two chair compo-
nents such as a leg and the seat plate. In this case, it
is more likely that the grasp result in a collision after
being warped to a newly seen object. The chair in Fig-
ure 6(k) shows some instances where this issue might
happen. Using our approach it is hard to explicitly dis-
count these kinds of grasps.

4.2 Detection

We test our proposed grasping pipeline in a simulated
environment using Gazebo. The constructed scenes al-
ways contain the chair to be grasped at the origin of
the world frame. We set the location of the manipulator
bases to (1,1,0) and (-1,-1,0) respectively. The cameras
are also placed diagonally at (1,-1,1) and (-1,1,1). This
setup allows the robots to reach pretty much any posi-
tion on the grasped object. Instances where the robots
successfully lifted the target chair are shown in Figure 8.

8 Philipp Badenhoop

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6: Grasp generation on different models. Each model is given as mesh (a-d) and as point cloud (e-h). The
generated grasp poses (i-l) are collected from the 50 best dual-arm grasps. The blue cylinders represent the z-
direction of the grasps (see Figure 3 for reference).

In all experiments, we generated the grasp database
using only the model shown in 6(𝑎). Consequently, this
model is the one that is registered to the observed point
clouds. To parameterize CPD, we used the values 𝜆 = 3

and 𝛽 = 3 and set the maximum number of iterations
to 30. Figure 9 depicts meshes that were reconstructed
from the registered point clouds of two example chairs
during the detection phase of the pipeline.

We can see that the non-rigid registration is able to
deform the template chair to match the size of the tar-
get object. More importantly, it is able to bend the back
plate and the legs to align with local curvatures. Fig-
ure 10 shows that the orientation of the grippers almost
perfectly matches the orientation of the grasped parts.

This indicates that the grasp transformation works as
expected.

4.3 Limitations

It is generally hard to directly compare the results of
different grasping algorithms. The performance of grasp-
ing systems depends on a variety of different factors
including the particular choice of the manipulator and
gripper, the lighting of the environment and obviously,
the objects that should be grasped themselves. We un-
derstand that we are only partially able to reason about
the practicality of our proposed method in the real

Dual-Arm Grasp Detection of Chairs 9

(a) (b) (c) (d)

0

2,000

4,000

6,000

8,000

2,292

1,149
626

141

7,205
7,520

8,126 8,035

503

1,331 1,248
1,824

#
sa

m
pl

es

accepted constraint rejected collision rejected

Fig. 7: For each of the models (a-d) in Figure 6, we
ran our hypothesis sampling algorithm on 10’000 uni-
formly sampled points and counted how often the sam-
ples were accepted, rejected due to violated constraints
or rejected after collision checking.

world given that we only tested it in simulations. How-
ever, we would like to point out general limitations of
our proposed method that we think are important to
consider when deploying our dual-arm grasping system
to a real application.

One issue that we encountered with the setup is the
fact that the cameras do not capture the chair’s seat
plate from the bottom. Therefore, the observed point
cloud has only one layer of points compared to the fully
captured template model cloud that has two layers as-
sociated with the seat plate. The problem is that CPD
just tries to minimize the total alignment error and
thus, the aligned plate is centered around the single
layer of observed points thereby creating an undesired
offset. This offset can be clearly seen in Figure 11(a). A
simple workaround is to manually remove the bottom
points of the seat plate from the template cloud, how-
ever, this fix should be considered quite unmethodical.

While trying out different kinds of chairs we noticed
that it is generally hard to figure out whether a particu-
lar grasp is rather inappropriate for our specific type of
gripper. For example, Figure 11(b) depicts the manipu-
lator trying to grasp at a place that would be a good fit
for the database model but not for the displayed chair.
We found that CPD is unable to deform the template
cloud with high level of details as would be required in
this case. Lowering the parameters 𝜆 and 𝛽 is unfortu-
nately not an option as this worsens the deformation
quality on a global scale.

Finally, we want to mention that CPD only pro-
vides satisfying results when the shapes of the regis-
tered objects are similar enough. Figure 11(c) and 11(d)
show the attempt of aligning our database model to a
chair whose backrest is formed like an arc. The regis-
tration can definitely be considered failed. Therefore, if
the grasping system should be able to perform well on
a large variety of different objects of familiar type, we
recommend to generate grasps from more than a single
model and implement a point cloud matching algorithm
to obtain the model that is most similar to the observed
one.

5 Conclusions

In this work we implemented a pipeline for dual-arm
grasping of large objects of familiar kind with partic-
ular focus on chairs. We proposed a method, to effi-
ciently sample grasp hypotheses and synthesize dual-
arm grasps based on common measures that are derived
from the grasp wrench space analysis. A key component
of the ability to transform grasping knowledge to newly
seen instances arises through the usage of non-rigid reg-
istration. In simulations, we showed that our method is
able to detect grasps to successfully lift chairs that are
similar in shape compared to the model used to create
the grasp database. An advantage of our approach is
that it only requires a model of an example chair as in-
put and relatively short offline processing time in order
to start detecting grasps.

For future work, we would like to evaluate how our
grasping pipeline performs in the real world. Besides
that, work has to be done to improve the registration
process as we noticed that the coherent point drift al-
gorithm performs poorly in certain scenarios. Finally, it
would be interesting to examine the usage of different
types of robot hands for dual-arm grasping.

References

1. Robotiq 2f 140 product page. URL
https://robotiq.com/products/
2f85-140-adaptive-robot-gripper.

2. Universal robot ur10 product page. URL
https://www.universal-robots.com/products/
ur10-robot/.

3. J. Bohg, A. Morales, T. Asfour, and D. Kragic.
Data-driven grasp synthesis - A survey. CoRR,
abs/1309.2660, 2013. URL http://arxiv.org/
abs/1309.2660.

4. C. Borst, M. Fischer, and G. Hirzinger. Grasp-
ing the dice by dicing the grasp. In Proceedings

https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://www.universal-robots.com/products/ur10-robot/
https://www.universal-robots.com/products/ur10-robot/
http://arxiv.org/abs/1309.2660
http://arxiv.org/abs/1309.2660

10 Philipp Badenhoop

(a) (b)

(c)

Fig. 8: Simulations run in Gazebo, where the manipulators successfully grasped and lifted a chair.

(a) (b)

(c) (d)

Fig. 9: Reconstructed meshes (c-d) obtained from reg-
istered point clouds of the observed chairs (a-b). The
template cloud used in the non-rigid registration pro-
cess is shown in Figure 6(e). Note, that the dark wholes
are only caused by a displaying issue and not by missing
triangles in the mesh.

(a)

(b)

Fig. 10: Detailed view of executed grasps on the model
shown in Figure 6(b). The orientations of the grippers
align well with the grasped parts of the chair.

2003 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2003) (Cat.
No.03CH37453), volume 4, pages 3692–3697 vol.3,
2003.

5. M. Dickerson, R. Drysdale, S. McElfresh, and
E. Welzl. Fast greedy triangulation algorithms.
Computational Geometry, 8, 07 1997. doi: 10.1016/
S0925-7721(97)89149-3.

6. C. Ferrari and J. Canny. Planning optimal grasps.
In Proceedings 1992 IEEE International Confer-
ence on Robotics and Automation, pages 2290–2295
vol.3, 1992.

7. N. Koenig and A. Howard. Design and use
paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ International Con-

Dual-Arm Grasp Detection of Chairs 11

(a) (b)

(c) (d)

Fig. 11: Summarizing the limitations of the registration-
based method. CPD has problems aligning the seat
plate (a). Here the green cloud corresponds to the tem-
plate cloud and the red one is the observed cloud. In
(b), a grasp is executed at a place which is rather inap-
propriate for the gripper. Figures (c-d) show, that the
non-rigid registration performs poorly when the target
object has a significantly different shape than the tem-
plate model.

ference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), volume 3, pages
2149–2154 vol.3, 2004.

8. S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen.
Learning hand-eye coordination for robotic grasp-
ing with deep learning and large-scale data collec-
tion. CoRR, abs/1603.02199, 2016. URL http:
//arxiv.org/abs/1603.02199.

9. J. Mahler, M. Matl, V. Satish, M. Danielczuk,
B. DeRose, S. McKinley, and K. Goldberg. Learn-
ing ambidextrous robot grasping policies. Science
Robotics, 4(26):eaau4984, 2019.

10. A. T. Miller and P. K. Allen. Graspit! a versatile
simulator for robotic grasping. IEEE Robotics Au-
tomation Magazine, 11(4):110–122, 2004.

11. A. Myronenko and X. Song. Point set registra-
tion: Coherent point drift. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(12):
2262–2275, 2010.

12. D. Pavlichenko, D. Rodriguez, C. Lenz,
M. Schwarz, and S. Behnke. Autonomous bi-
manual functional regrasping of novel object class
instances. 2019 IEEE-RAS 19th International
Conference on Humanoid Robots (Humanoids),

pages 351–358, 2019.
13. D. Rodriguez, C. Cogswell, S. Koo, and S. Behnke.

Transferring grasping skills to novel instances
by latent space non-rigid registration. CoRR,
abs/1809.05353, 2018. URL http://arxiv.org/
abs/1809.05353.

14. R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha,
and M. Beetz. Towards 3d point cloud based object
maps for household environments. Robot. Auton.
Syst., 56(11):927–941, Nov. 2008. ISSN 0921-8890.
doi: 10.1016/j.robot.2008.08.005. URL https://
doi.org/10.1016/j.robot.2008.08.005.

15. S. Y. Shin and C. Kim. Human-like motion gen-
eration and control for humanoid’s dual arm ob-
ject manipulation. IEEE Transactions on Indus-
trial Electronics, 62(4):2265–2276, 2015.

16. C. Smith, Y. Karayiannidis, L. Nalpantidis,
X. Gratal, P. Qi, D. V. Dimarogonas, and
D. Kragic. Dual arm manipulation - a survey.
Robotics Auton. Syst., 60:1340–1353, 2012.

17. Stanford Artificial Intelligence Laboratory et al.
Robotic operating system. URL https://www.
ros.org.

18. N. Vahrenkamp, E. Kuhn, T. Asfour, and R. Dill-
mann. Planning multi-robot grasping motions. In
2010 10th IEEE-RAS International Conference on
Humanoid Robots, pages 593–600, 2010.

http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1809.05353
http://arxiv.org/abs/1809.05353
https://doi.org/10.1016/j.robot.2008.08.005
https://doi.org/10.1016/j.robot.2008.08.005
https://www.ros.org
https://www.ros.org

	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Conclusions

