
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Autonomous Racing with Deep Learning

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Philipp Badenhoop
geboren am: 7.7.1996
geboren in: Berlin Neukölln

Gutachter/innen: Prof. Dr. Holger Schlingloff
Prof. Dr. Verena Hafner

eingereicht am: verteidigt am:

Abstract

This thesis covers the implementation of an autonomous racing car in scale 1:8
using deep learning. Based on the current camera frame, our method employs a
neural network which predicts the vehicle’s future path. The network is trained
in a supervised fashion using data which is recorded while a human drives the
car manually around the racing track. We propose a simple model to control the
steering angle and speed using the network’s predictions. Furthermore, we show
that our method is both easier to train and to scale up to higher velocities than
the well known end-to-end approach which uses a neural network to output the
steering commands directly. With our autonomous racing car, we were able to
win the third place in the Deep Berlin Robocars Challenge.

3

Contents

1. Introduction 6
1.1. Related Work . 6
1.2. Structure of the Thesis . 7

2. System Architecture 8
2.1. Chassis . 8
2.2. Hardware . 9
2.3. Camera . 10
2.4. Wheel Encoders . 10
2.5. Software Architecture . 10

2.5.1. Odroid . 11
2.5.2. STM32 . 15

3. Deep Learning 16
3.1. Motivation . 16
3.2. Artificial Neural Networks . 16
3.3. Learning . 19

3.3.1. Loss Function . 20
3.3.2. Optimization . 21
3.3.3. Backpropagation . 25
3.3.4. Overfitting . 28

3.4. Convolutional Neural Networks . 29

4. Autonomous Driving 31
4.1. End-to-End Approach . 31

4.1.1. Preprocessing . 31
4.1.2. Neural Network Model . 32
4.1.3. Training . 33
4.1.4. Dataset . 34
4.1.5. Test Results . 35

4.2. Trajectory Prediction Approach . 39
4.2.1. Overview . 39
4.2.2. Odometry . 41
4.2.3. Neural Network Model . 45
4.2.4. Driving Model . 45

5. Results 48
5.1. Wheel Encoder Anomaly . 48
5.2. Dataset . 49
5.3. Final Race . 49
5.4. Limits . 51
5.5. Possible Improvements . 51

4

6. Conclusion 53

A. Code Snippets 58
A.1. End-to-End Model Implementation using Keras 58
A.2. Trajectory Prediction Model Implementation using Keras 59

B. Trajectory Prediction Approach Parameters 60

C. Source Code 61
C.1. Odroid . 61

C.1.1. C++ Source Code . 61
C.1.2. Python Source Code . 76

C.2. STM32 . 98
C.2.1. C Source Code . 98

5

1. Introduction

The development of fully self-driving cars is currently one of the most exciting and
demanding challenges in modern vehicle industry. Traveling on the road should become
safer and more comfortable in the absence of the human driver. However, teaching a
computer how to navigate the vehicle in complex areas such as cities appears to be a
difficult problem. Therefore, it makes sense to tackle autonomous racing first since one
can focus on fewer and more simplified aspects.
The goal of this thesis is to implement an autonomous racing system in scale 1:8 which
is able to compete at the Deep Berlin Robocars Challenge on 12 September 2018 [14].
During the competition, each team let their car drive 10 rounds around the track. Only
the fastest lap time counted and was compared across the teams. There weren’t any
obstacles or other racing cars on the track during driving. When all four tires left the
track which was delimited by white lane markings, a two seconds penalty was added
to the lap. Obviously, this gave some tolerance which could be exploited in terms
of driving behavior. Over the last couple of months before the challenge, the teams
were able to visit the final racing track once a week to collect data and tweak their
algorithms.
Our car has been originally designed for the semester project “Hochautomatisiertes
Fahren” [4] to develop an autonomous platooning system. However, that system was
neither designed for racing nor for driving on the final track at all. In terms of sensoring,
the car was equipped with a single monocular camera, a wheel encoder on each rear
tire as well as an ultrasonic sensor which was not actually used for racing.
Based on the camera’s current frame, our autonomous racing algorithm uses a neural
network that predicts a trajectory which the car should follow. Using these trajectories,
we can employ a driving model to control the steering angle and speed. This method
differs from the traditional deep learning end-to-end approach which uses a neural
network to predict the steering angle from the image directly. Our neural network
tries to solve the problem of where the car should drive to instead of how it should
drive. Therefore, we gain more control over the system. For instance, our car is able
to recognize straight lines and turns to accelerate and brake respectively. With this
approach we were able to win the third place out of 12 teams in the Deep Berlin
Robocars Challenge.

1.1. Related Work

Autonomous racing is quite a young sports and research topic. Popular international
competitions such as Roborace [32] [9] and Self Racing Cars [33] [26] exist only since
2016. The participating teams build full-sized autonomous vehicles which drive on a
real racing track. In [13], de la Iglesia Valls et al. introduce the design of a driverless
racing car which won the Formula Student Driverless competition in 2017. The vehicle

6

was equipped with a variety of sensors including LIDAR, IMU, GPS and a stereo
camera to perform simultaneous localization and mapping (SLAM). They employed
the LIDAR to detect cones which were delimiting the track. Therefore, they didn’t rely
on visual information making it inapplicable to our use case where there only exists
lane markings to define the track. Unfortunately, besides a few occasional blog posts,
there are hardly any further scientific publications about other competitions yet.
Actually, most scientific work in the field of autonomous racing is primarily done either
on miniature cars or in simulations. In [25], fairly complex control techniques are
presented to show how to drive a 1:43 scale car at its physical limits. Rosolia et al.
employ model predictive control to reach the same goal but in a simulated environment
[30]. However, both approaches assume that the vehicle is able to localize itself on the
track and do not focus on the visual aspects.
The rise of deep learning and convolutional neural networks revolutionized computer
vision [15] and is excessively driving the development of autonomous vehicles (not
specifically racing). In [7], Nvidia introduced a neural network architecture called
PilotNet which acts as an end-to-end lane keeping assistent. The network takes an
image as input and outputs a steering angle which is directly controlling the car. Ever
since, several other advanced architectures have evolved using recurrent neural networks
and residual connections for example [36].
There also exist some research on how to apply reinforcement learning to autonomous
driving in simulations [31]. However, this method hasn’t been successfully applied to
the real world yet.
Very exiting work in autonomous racing including deep learning for visual perception
has been done in [30] which uses a convolutional neural network to create a cost
function for a model predictive control algorithm. It also employs a core idea of our
trajectory prediction approach that is to use deep learning as a vision system and to
split perception and control at the same time.

1.2. Structure of the Thesis

This thesis is structured as follows. Section 2 provides an overview on the car’s hardware,
chassis and sensors as well as the system’s software architecture. In Section 3 we present
an introduction to deep learning. Section 4 is devoted to the implementation of the
autonomous racing algorithm. In Section 5 we describe our results and experiments
with the system. Finally, Section 6 concludes the thesis by summarizing what has been
done.

7

2. System Architecture

In this Section we give an overview of our racing car by presenting its chassis, sensors
and hardware components. Furthermore, we provide the software architecture which
outlines how to get from sensor data through steering commands to the final actuations
on the mechanics.

2.1. Chassis

Since we adopted the car used in the semester project “Hochautomatisiertes Fahren”,
there haven’t been many decisions regarding the chassis and mechanics of the system.
The Losi Horizon Hobby 8IGHT-E 1/8-scale 4WD RTR Buggy serves as the car’s
foundation. It includes a differential gear connecting the powerful 2500 kV motor to all
four tires. The wheels are covered with rubber textures providing plenty of grip on the
racing track. Since the track’s material was rubber too, there haven’t been any issues
regarding slippage even under competitive speeds. Furthermore, a suspension system
is build into the car, yielding a stable driving behavior in tight turns.

Figure 1: Photo of the racing car.

The acceleration of our motor turned out to be quite advantageous. In fact it’s specified
to drive up to 50 mph. Although the top speed is far from reachable on such a small
and curvy racing track, we definitely tried to exploit the car’s capabilities.
A servo is used to turn the front wheels, providing a maximum steering angle of

8

30◦ to each side. However, our initial servo appeared to be seriously slow. It took
approximately half a second to turn the wheels from full left to full right and vice versa.
This turned out to be a crucial problem and lead to certain design decisions in the
racing algorithm which are covered in more detail later on. Most of the competitors
used the Donkey Car [3] which is roughly half the size of our model. They come with
smaller wheels and weigh less so their servos act almost instantly. Fortunately, by
replacing the servos, we could improve the steering delay a bit.
In terms of powering the car, we make use of two 7.4 V lipo batteries, each having
a capacity of 4500 mA h. One battery is powering the motor exclusively whereas the
other one powers the rest of the hardware.
Altogther, one can say that our car provided the most potential in terms of motor
power and stability. However, compared to the majority of the competition, the vehicle
was rather big and heavy, resulting in less tolerance of staying in the track during the
turns.

2.2. Hardware

To compute the high level logic which outputs the steering commands, an Odroid XU4
is used running Ubuntu 16.04. The Odroid is preferred over the popular Raspberry
Pi due to its superior processor. Its recommended operation voltage is 5 V and under
full load its power consumption rises up to 5 A. Since our batteries output 7.4 V we
installed a DC to DC step down converter. However, the board seems to be really power
demanding, so we had to increase the output voltage of the converter to 5.7 V. Anything
below that would lead the system to reboot when running the racing algorithm.

Figure 2: Photo of the car’s hardware.

The STM32 microcontroller is responsible for running the low level realtime logic. This

9

includes handling the servo’s and motor’s PWM, getting data from the wheel encoders
as well as implementing a PID controller which controls the desired speed. A UART
connection is employed to communicate with the Odroid using a Mavlink protocol. To
be able to connect each component with the microcontroller, the STM32 is plugged
into a breakout board made by Assystem GmbH.

2.3. Camera

Our car is equipped with a DFM 22BUC03-ML camera [2] from The Imaging Source.
It is capable of producing frames at a resolution of 744× 480 pixel at 76 frames per
second which is a much higher resolution than actually required in our case since we
cropped and rescaled the image as described in more detail later on.
An important aspect proved to be the camera’s mounting position. Initially, it was
mounted at the front of the car, a couple centimeters above the wheels. We ended up
positioning the camera at the rear, roughly 40 cm above the ground. Consequently,
it gained a much better overview of the track making the predictions of the neural
network more reliable.

2.4. Wheel Encoders

To be able to measure the car’s motion regarding its speed and position, there are two
wheel encoders, one on each rear tire. These wheel encoders consist of two components:
• A dice containing equally spaced wholes which is connected to its corresponding

shaft.
• An optical sensor which emits an electrical impuls whenever a whole of the dice
is passing through it. These impulses are referred to as ticks and trigger an
interrupt in software which increments a simple counter variable.

In Section 4.2.2 we explain how this data is used to compute a path, showing where
the vehicle drives along in metric coordinates which is called odometry.

2.5. Software Architecture

In this Section we explain how the aforementioned parts connect through software.
Our system is composed of three software components which are shown in Figure 4.
Since we use a deep learning approach in our racing algorithm, our system has to
perform two use cases:

1. Recording training data while being controlled remotely.
2. Driving autonomously.

10

Figure 3: Photo of the rear left wheel encoder.

Therefore, we consider the car being either in recording mode or in autonomous mode.
In recording mode, a human is able to drive the car remotely. During this mode,
camera images and data from the wheel encoders are written to an external storage
device. A game controller is plugged into a Laptop which runs a program sending UDP
packets to the odroid containing the steering commands. This way, we are able to use
a wired controller which we did initially. One may also choose to connect the sensor of
a wireless controller directly to the odroid. However, the range of those devices may
be quite weak, so one should definitely follow the car while driving remotely on larger
tracks.

2.5.1. Odroid

To create the odroid’s software component, our design is based on the robot operating
system (ROS) [29] which is a popular collection of libraries and tools to build robot
applications. One of its main concepts constitutes the messaging system. In ROS,
messages are transported between nodes either over topics or services. Nodes are
processes running in the OS just like any other application. This way, developers
are able to write nodes in different programming languages. However, this implies
that some overhead is involved in sharing data between nodes due to inter-process
communication. Fortunately, ROS provides the nodelet plugin for C++. Instead of
creating a process for each individual C++ node, only a single process is launched
which is called the nodelet manager. The nodelet manager handles the execution and
message transportation of each node it is responsible for in its own process.

11

Figure 4: Component diagram of the system.

Messages and Topics
A node can publish messages to topics which other nodes can subscribe to. To avoid
confusion, we point out that for each message in our particular system, there exists
an equally named topic which the message is published to. For example, if there’s a
message SetAngle, then this message is transmitted over the topic /SetAngle. These
are the messages used in the system:

• RemoteAngle contains the steering angle transmitted over the network.
• RemoteThrottle contains the throttle value transmitted over the network.
• RemoteState encodes button presses so we can use the game controller to stop

and continue recording.
• SetAngle contains the steering angle transmitted to the STM32 which should be

applied to the servo.
• SetThrottle is interpreted as the speed the car should currently maintain and is

transmitted to the STM32.
• WheelTicks provides an update from the STM32 containing the ticks for the left

and right wheel encoders.

Note that there’s no message containing camera information. We choose to read the
camera images directly in the node where they are used. Thus, we avoid the overhead
of serializing and deserializing the image data for transmission over a specific topic.

12

Nodes
In the following, we provide an overview of the nodes employed in the system.

• remoteControlMessageReceiver receives UDP packets sent from the PC and
publishes the contained information to the /RemoteAngle, /RemoteThrottle and
/RemoteState topics respectively.
• remoteControl subscribes to /RemoteAngle and /RemoteThrottle and forwards

that information by publishing it to the /SetAngle and /SetThrottle topics.
• stm subscribes to /SetAngle and /SetThrottle and transmits the data to the

STM32 by handling the Mavlink communication over the UART. It also publishes
the incoming wheel encoder updates to /WheelTicks.
• recorder is responsible for storing the training data which incorporates reading

images from the camera as well as subscribing the /WheelTicks topic.
• autonom_drive runs the racing algorithm which publishes to /SetAngle and
/SetThrottle. It subscribes the /WheelTicks and the /RemoteThrottle topic
in order to still be able to get control over the vehicle’s speed despite being in
autonomous mode.

The ROS architectures for recording and autonomous modes are depicted in Figure 5(a)
and Figure 5(b) respectively 1.

1Note that we don’t provide any further lower level UML diagrams since we don’t want to focus on
the specific implementation details in this work.

13

(a) Active nodes and topics in recording mode.

(b) Active nodes and topics in autonomous mode.

Figure 5: ROS architectures.

14

2.5.2. STM32

Since we adopted the car from the semester project and there was already everything
implemented that we needed, we left most parts of the STM32 unchanged. Its embedded
architecture is based on a scheduler which periodically runs a set of tasks. A task is
nothing more than a piece of C code. Global variables are used to share data between
different tasks. In the following, we provide a list of the most important ones 2:
• mavlink is responsible to handle the Mavlink protocol using the UART.
• vehspdctrl implements a PID controller to control the target speed and updates

the motor’s PWM module accordingly.
• stangproc updates the servo’s PWM module based on the target steering angle.
• eict configures and reads input capture timers to receive the ticks from the wheel

encoders.

2Note that the poor naming stems from the fact that most of the STM software was left unchanged
from the semester project.

15

3. Deep Learning

This Section provides an introduction into deep learning which is the core technology
used in this work to solve the autonomous racing problem.

3.1. Motivation

Machine learning has gained rapid success in recent years. The era of deep learning
began with AlexNet [21], a Deep Convolutional Neural Network which considerably
outperformed its competition in the standard image classification challenge ImageNet.
In the following six years, this technology has been applied to a wide variety of other
problems such as natural language processing [12], handwriting recognition [40] and
cancer detection [5]. However, these networks already existed in the 1980s [16] and
were only able to succeed due to huge advances in high throughput computing.
History showed that problems which humans perform well at are typically hard to
solve algorithmically by writing traditional, imperative programs. The classification of
images is known for being such a phenomenon. Obviously, humans are able to instantly
recognize objects like trees, cats and cars on an image. However there doesn’t seem
to exist any explicit rules how we actually perform this task. Therefore, new systems
have been developed that are able to learn how to solve these problem by themselves,
given some example data.
In machine learning, the most well researched learning paradigm is known as supervised
learning. On an abstract level, a supervised learning model learns a function by fitting it
with examples of input-output mappings. Taking the image classification as an example,
the model gets a vector of pixels as input and outputs a binary vector specifying which
classes it detected. The model is trained with large sets of image-to-class-label pairs.
If trained properly, it is able to learn the specific features of each class in order to
generalize to new data making it perform well on images it has never seen before.
The most sophisticated deep learning models for supervised learning are artificial neural
networks (ANNs).

3.2. Artificial Neural Networks

Despite their name, modern ANNs don’t really aim to model their biological counterpart
which they were inspired from [15]. An ANN can be described as a graph consisting of
nodes which are connected through edges. A node gets one or multiple signals from its
input edges, computes a weighted sum of its inputs, applies a threshold function and
outputs a new signal through its output edges. ANNs are structured in consecutive
layers, consisting of one input layer followed by at least one hidden layer and finally
the output layer. This structure is also known as the multilayer perceptron [11]. An
example ANN is depicted in Figure 6. Each layer computes a function which can be

16

Figure 6: Visual representation of a basic multilayer perceptron consisting of a single
hidden layer. Each node passes its output as weightened input to every node
in the next layer.

represented as

f(x) = σ(Wx+ b) (1)

where
• x is the input vector of dimension m,
• W is the n×m weight matrix where n is the number of nodes in the layer,
• b is the bias vector of dimension n and
• σ is the activation function.

The output of f is a n-dimensional vector which expresses the activation of each node
in the layer. Each activation is given as input to every node in the next layer.
As one can see, the input edges are weighted. Therefore, an edge can be of high
significance if its weight is large enough. On the other hand, setting it to zero prevents
information to pass through the next layer. The original intuition behind the activation
function was to define for which summed input the neuron actually fires, which means
that its output is greater than zero. For example, using a neuron as a binary classifier,
one may take the binary activation function

σi(x) =

1 if xi > 0
0 otherwise

∀i ∈ {1, ..., n} (2)

so the i-th neuron becomes active as long as the term (Wx+ b)i is greater than zero 3.
The bias can be viewed as a threshold of the weighted sum of inputs Wx which has to
be reached so that the activation function lets the neuron fire.

3In fact, activation functions act always elementwise with the same operation for all i so one often
omits the indexed notation.

17

Another purpose of the activation function is to introduce nonlinearity into the system.
Let σ(x) = x be the identity function. Now, consider a three layer model

y = W1x+ b1

z = W2y + b2
(3)

where x denotes the input layer, y the activations of the hidden layer and z the
activations of the output layer. Thus, the input and hidden layer are connected
through weights W1 and the hidden and output layer are connected through weights
W2. We can observe that the third layer is actually redundant since two composed
affine transformations can be expressed as a single affine transformation:

W2(W1x+ b1) + b2 = W2W1x+ (W2b1 + b2). (4)

In practice, we want our models to approximate highly non-linear functions and
therefore, a non-linear activation function should be applied to our weighted sum. A
very common choice is the ReLU function [34] depicted in Figure 7(b). There are a
couple of desired properties the activation function may fullfill however, those can only
be motivated by understanding how an ANN learns.

(a) The binary function. (b) The ReLU function: σ(x) = max(0, x).

Figure 7: Different activation functions.

18

3.3. Learning

Solving a supervised learning problem involves the following steps [22].
1. Collect example data and partition it into training, validation and test data.

There is no general way to measure the quality of the data set so this always
depends on the specific problem and has to be figured out by exploration.

2. Create (or refine) a model.
3. Training step. Optimize the model’s parameters to perform well on the training

data.
4. Validation step. Check how the model behaves on the validation data. If the

model doesn’t perform well, go back to step 2. Otherwise, continue with step 5.
5. Testing step. Once the model works reasonably on both training and validation

data, we run it on the final test data right before deployment to see whether
it is able to perform well in real life applications. It is crucial that this data is
kept isolated during the previous steps since any further adaption to the model
prevents us from objectively telling how the model generalizes to data it has
never seen before.

When building neural network models, one has to deal with a wide variety of parameters.
For structure, we partition them into two types:

a) Learnable parameters. Parameters which are set during the training step. In
neural networks, these are the weights and biases.

b) Non-learnable parameters or hyperparameters. One may group these ones even
further into:
– Topological parameters. Regard the number and types of layers, the number

of nodes on each layer as well as the choice of activation functions, to name
a few.

– Training parameters. Correspond to specific parameters of the training
algorithm, the loss function and the method of weight initialization for
example.

The difference between these types is that non-learnable parameters are selected by
the human developer (through exploration and repetition of step 2) whereas learnable
parameters are discovered by a training algorithm. For that, we need a metric which
represents how well a model predicts on a given input and a ground truth output (or
simply label). In literature, this metric is known as the loss function.

19

3.3.1. Loss Function

One may think of training or leanring as an optimization problem. Given n samples of
training data as inputs Xi and their corresponding labels Yi for 1 ≤ i ≤ n as well as a
model Φ(x,Θ) where x is the model’s input and Θ are the learnable parameters, our
goal is to find Θopt to minimize the error L between the model’s predicted output and
the labels

Θopt = arg min
Θ

LΦ,X,Y (Θ) (5)

with

LΦ,X,Y (Θ) = 1
n

n∑
i=1
E(Φ(Xi,Θ), Yi). (6)

Here, E(·, ·) measures the error between the model’s prediction Φ(Xi,Θ) and a label Yi
so we call it the output error measure. L is the average error over n training examples
X and Y and is referred to as the loss function or simply the loss [22].
To provide a more concrete understanding, we show how this could be applied to
autonomous driving using basic ANN models. A simple approach would be to create
an artificial neural network model which takes the current camera image as input and
directly outputs the target steering angle. Since there’s no other processing involved
between the sensory data and the steering commands, this is known as the end-to-end
approach [7]. Data is collected by a human driving the car while recording the current
steering angle for each new frame. The objective is that the network should mimic the
human behavior. Therefore, this technique is referred to as behavioral cloning.
First, we have to define the neural network model. Its input layer takes a vector
representation of an image which is done by stacking all the pixel values. The output
layer is simply a single node which gives the steering angle. Determining the network
architecture and the non-learnable parameters is done by many iterations of the training
and validation steps.
In order to train the model, we have to define an appropriate output error measure.
Optimally, our network always predicts the exact same steering angle that the human
driver had entered based on the collected data. Given a model’s predicted steering
angle y and a ground truth steering angle ŷ, the error measure could be as simple as
the squared distance

E(y, ŷ) = (y − ŷ)2. (7)

By squaring the difference between y and ŷ, we remove the sign and increase the
penalty on larger errors. A widely used generalization to n-dimensional outputs is

20

known as the mean squared error (MSE) defined as

MSE = E(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2. (8)

There exist several other output error measures which are mainly divided into those
that are suitable for regression problems (e.g. MSE or mean absolute error (MAE))
and the ones that are intended to be used for classification problems (e.g. cross entropy
or hinge) [22].
Since we want to minimize the model’s loss, we have to determine the appropriate
learnable parameters Θopt as depicted in Equation 5. However, neural networks are
extremely complex functions due to their possibly huge numbers of layers, neurons,
weights and other parameters. Therefore, it’s not feasable to get Θopt by trying to
find an analytical solution. Thus, we need an optimization algorithm to compute the
learnable parameters which minimize the loss function.

3.3.2. Optimization

To train our neural network, the first-order iterative optimization algorithm gradient
descent [42] is used to find the appropriate learnable parameters Θopt. The gradient of
a multi-variable function f(x1, ..., xn) is defined as

grad(f) = ∇f =

∂f
∂x1...
∂f
∂xn

 (9)

where ∂f
∂xi

is the partial derivative of f with respect to xi. The important property is
that for any given point x, the gradient ∇f(x) points to the direction of the greatest
rate of increase of f . Likewise, −∇f(x) points to the direction of the greatest rate of
decrease of f .
Gradient descent uses this observation to find a local minimum. Starting at some
initial point x0, we iteratively perform the following updates

xn+1 = xn − γ∇f(xn) (10)

until the sequence (xn) converges at a local minimum. However, to fullfill the desired
condition f(x0) ≥ f(x1) ≥ f(x2) ≥ ... the update rate γ ∈ R+ has to be chosen small
enough.
In the following, we want to show how gradient descent is used to minimize the loss
function L(Θ). In practice, Θ is going to be high dimensional. For simplicity, let’s
assume a model consisting of only two learnable parameters Θ = (θ0, θ1) which we
further assume to be both weights. Now, we can visualize the loss function as a

21

Figure 8: Visualization of a fictional error surface. The model contains only two
weights as learnable parameters. Given some inital values for weight 1 and
2 (red cross), gradient descent is used to walk down to the nearest valley
representing a local minimum in loss.

landscape where each configuration of θ0 and θ1 results in a position with height L(Θ)
as depicted in Figure 8. By initializing these weights randomly, we could potentially
land on a peak of the error surface (red cross in Figure 8). To get the minimal local
error, we use gradient descent to iteratively update the weights to walk down to a
surrounding valley.
It should be noted that this method does not guarantee to find the global minimum.
Hence, different weight initializations may lead to different results.
What’s left is to determine the partial derivatives of L with respect to each θi to
compute the gradient ∇L. We can then simply update the learnable parameters using
Equation 11

Θn+1 = Θn − γ∇LΦ,X,Y (Θn) (11)

until (Θn) hopefully converges at a local minimum. γ is referred to as the learning rate
which is an important hyperparameter. The partial derivatives with respect to each
learnable parameter can be computed using the backpropagation algortihm [41] (see
Section 3.3.3).
When computing the loss, it matters to choose an appropriate quantity of training
samples, given as X and Y . Let’s assume to select the entire training set to calculate

22

the loss over. Consequently, we have to evaluate the model’s prediction for each sample
in the possibly huge training set in order to perform just a single update to the weights
and biases. However, in practice we need to perform multiple updates since we do not
know how far to walk into the direction of the gradient to arrive at the local minimim
(see Figure 8 again). Since computing the loss function over the entire training set
is usually very expensive, instead we can randomly subsample the data into smaller
chunks called mini-batches. These mini-batches serve as an approximation of the full
training set when used to compute the model’s loss. The corresponding method is then
known as mini-batch stochastic gradient descent.
To summarize the optimization procedure, Figure 9 gives high-level pseudocode of a
mini-batch stochastic gradient descent algorithm used for training a neural network.
The three most important steps are as follows:

1. Forward pass (line 4). We compute the model’s predictions by processing the
input Xbatch. Then we can calculate the error between the network’s output and
the labels Y batch. During the forward pass, we keep certain data in memory that
is needed in order to perform the backward pass. For illustration, this data is
returned as the function’s result.

2. Backward pass (line 5). Based on the result of the forward pass, this function
computes the gradient using backpropagation.

3. Update (lines 6 and 7). Finally updates the weights and biases according to
Equation 11.

23

Algorithmus 1 : Mini-batch stochastic gradient descent algorithm
Input :num_samples training inputs X.
Input :num_samples training labels Y .
Input : batch_size.
Input :Neural network model Φ with weights W and biases B.
Input :Output error measure E .
Input :Learning rate γ.
Output :Optimized weights W and biases B.

1 num_batches← bnum_samples/batch_sizec
2 for i← 1, ..., num_batches do

// Retreive batches Xbatch and Y batch by randomly sampling
batch_size samples from X and Y respectively.

3 Xbatch, Y batch ← sample_batch(X, Y, batch_size)
// Forward pass: Compute the model’s predictions and the

resulting error across the current batch.
4 result = forward_pass(Φ,W ,B, E , Xbatch, Y batch)

// Backward pass: Use the result from the forward pass to compute
the gradient vectors for W and B.

5 ∆W ,∆B ← backward_pass(result)
// Update: Use gradient descent to update the weights and biases.

6 W ←W − γ∆W
7 B ← B − γ∆B

// Remove the samples used in the current batch.
8 X ← X −Xbatch

9 Y ← Y − Y batch

10 end
11 return (W , B)

Figure 9: High-level pseudocode showing the mini-batch stochastic gradient descent
algorithm.

24

3.3.3. Backpropagation

In order to optimize the learnable parameters in a neural network, we still need a way
to compute the gradient of the loss function. In other words, we have to get the partial
derivatives of L with respect to each learnable parameter in Θ = (θ1, ..., θm)

∇LΦ,X,Y (Θ) =

∂LΦ,X,Y

∂θ1...
∂LΦ,X,Y

∂θm

 . (12)

The backpropagation algorithm allows us to evaluate these derivatives efficiently on
arbitrarily complex neural networks.
First, we need to transform our model into a computational graph. Computational
graphs represent functions where nodes are either input parameters or operations.
Edges indicate the data flow. An example is depicted in Figure 10(a) which computes
the function f(x,w, b) = (wx+ b)2. We could imagine that f represents a node in a
neural network with a single input x and its corresponding weight w, bias b as well as
the activation σ(x) = x2. Note that we label each intermediate result of the operations,
that is

p = wx q = p+ b r = q2.

Given some concrete input values to f , backpropagation computes the partial derivatives
of the final output r with respect to each input parameter w, x and b which are ∂r

∂w
,

∂r
∂x

and ∂r
∂b
. To refer to the neural network analogy again, the concrete inputs would

be training input data x and randomly initialized weight w and bias b. In reality, one
would actually need a fourth parameter y representing the label and some extra nodes
in the graph in order to compute the error between the network’s output and the label.
However, we left that out for simplicity.
The algorithm consists of two steps, a forward pass (see Figure 10(b)) and a backward
pass (see Figure 10(c)). During the forward pass, we evaluate each node’s operation
by forwarding the results through the graph in topological order. By doing this, we
are able to compute the local gradients which are the partial derivatives of each node’s
output with respect to its own inputs. In our example, we start by calculating the
local gradient for node p. It’s inputs are w = 2 and x = 4 so we want to get ∂p

∂w
and ∂p

∂x

∂p

∂w
= ∂wx

∂w
= x = 4 ∂p

∂x
= ∂wx

∂x
= w = 2.

Next, we propagate p’s output to the input of q. The partial derivatives of node q with

25

respect to its inputs p = 8 and b = 3 are given as

∂q

∂p
= ∂(p+ b)

∂p
= 1 ∂q

∂b
= ∂(p+ b)

∂b
= 1.

Finally, we pass q = 11 to r and get r = 121 as well as

∂r

∂q
= ∂q2

∂q
= 2q = 22.

Using the results from the forward pass, the backward pass traverses the graph in
reverse topological order and consecutively computes the partial derivatives of the
graph’s output with respect to each node’s input. In other words, it measures the
influence each node has on the final output (including the input nodes). Therefore,
backpropagation heavily exploits the chain rule

∂z

∂x
= ∂z

∂y

∂y

∂x
. (13)

For example, if we want to compute ∂r
∂p
, we can also write

∂r

∂p
= ∂r

∂q

∂q

∂p
= 22 · 1 = 22.

Note that in this equation, ∂q
∂p

is part of the local gradient of q which we already evaluated
in the forward pass. On the other side, the first factor ∂r

∂q
is the backpropagated result

from q’s output node which is node r. Having determined ∂r
∂p
, we backpropagate this

result to node p to compute ∂r
∂w

and ∂r
∂x

∂r

∂w
= ∂r

∂p

∂p

∂w
= 22 · 4 = 88 ∂r

∂x
= ∂r

∂p

∂p

∂x
= 22 · 2 = 44.

Again, the second factor stems from the local gradient of p. By getting ∂r
∂b

with

∂r

∂b
= ∂r

∂q

∂q

∂b
= 22 · 1 = 22

the backpropagation algorithm finishes and outputs the gradient vector

∇f(2, 4, 3) =

88
44
22

 .

26

w

x

b

p = wx

q = p+ b r = q2

(a) Computational graph representing the function f(w, x, b) = (wx+ b)2.

w

x

b

∂p
∂w

= x = 4
∂p
∂x

= w = 2
∂q
∂p

= 1
∂q
∂b

= 1
∂r
∂q

= 2q = 22

2

4

3

8
11 121

(b) Forward pass. We compute each node’s output (green numbers) as well as their local gradients
in topological order using a single pass. (blue numbers).

w

x

b

∂r
∂w

= ∂r
∂p

∂p
∂w

∂r
∂x

= ∂r
∂p

∂p
∂x ∂r

∂p
= ∂r

∂q
∂q
∂p

∂r
∂b

= ∂r
∂q

∂q
∂b

∂r
∂q

= ∂r
∂r

∂r
∂q

88

44

22

22
22 1

(c) Backward pass. By using the chain rule, we evaluate the partial derivative of the output r
with respect to each node’s input (red numbers) in reversed topological order.

Figure 10: Application of the Backpropagation algorithm on a computational graph.

27

Although the provided example is quite small, the described method remains the same
even for very large computational graphs which represent complex neural network
architectures with millions of weights. The algorithm is extremely efficient since it goes
over each node exactly twice and performs rather simple calculations on them.
We finally presented all the theoretical tools required to train neural networks. However,
we don’t want our models to only perform well on the training data. Referring to the
autonomous racing problem, we could build an end-to-end neural network as described
in Section 3.3.1, train it with lots of images and steering angles and very likely, it still
won’t be able to drive as expected in the real world. In order to get desired results on
the validation and test process, some more concepts are involved.

3.3.4. Overfitting

It often occurs that the model performs very well during training but miserably during
the validation and testing steps. We say that the model overfits to the training data.
Overfitting appears when the training loss decreases while the validation loss increases.
L2 regularization, dropout and data augumentation are common strategies to mitigate
this problem.

Regularization
The idea behind regularization stems from the observation that overly complex models
don’t generalize well [18] [23]. Therefore, we can add another term R to the loss
function to penalize the model’s complexity

LΦ,X,Y (Θ) = 1
n

n∑
i=1
E(Φ(Xi,Θ), Yi) +R(Θ). (14)

L2 regularization is a commonly used technique to penalize large weights which is
defined as

R(Θ) = λ
m∑
i=1

Θ2
i . (15)

Here, λ is another hyperparameter which represents the regularization strength. In-
tuitively, this technique could result in weights which are set so close to zero that
they cancel out. As a consequence, large parts of the network may not be really in
use anymore which virtually 4 shrinks the size of the model and potentially prevents
overfitting [23].

4We say “virtually” since the actual computational costs are still the same as without regularization.

28

Dropout
Dropout is another regularization technique which randomly sets the activation of
some neurons to zero (see Figure 11). The probability p of keeping neurons is another
hyperparameter. We only drop activations during training. In order to maintain the
same expected value across both phases, we multiply the output of each neuron by p
during testing.
The intuition behind dropout is that it forces the neural network to have distributed
representations since it can not rely on any single neuron to be reliably active for the
representation of a state [24].

Figure 11: Visualization of dropout.

Data Augumentation
To further improve the model’s generalization ability, we may expand the training set
by applying some transformations. For example, we can mirror or rotate images or
change the brightness and contrast. Thus we incorporate variations into the dataset
which potentially makes predictions more invariant to different lighting conditions or
perspectives not covered by the training data.

3.4. Convolutional Neural Networks

Neural networks are widely applied in image processing. However, traditional networks
(as presented in Section 3.2) do not perform well on images. A 640× 480 pixel image
in RGB-colorspace results in an input layer with about 9.2× 105 nodes, thus already
9.2 × 105 weights per node in the second layer. The second problem is that the
network learns position-dependent features. Suppose we’re training a neural network
to recognize cats. On our training images, cats only appear in the upper left corner, so
only neurons connected to this part get to know the specific features. Given an image
where the cat sits in the bottom right corner, our network wouldn’t be able to reliably
detect it.
Convolutional layers are designed to alleviate these downsides. In a convolutional layer,
each neuron has its own small region of the image it is looking at which is called the
receptive field. Hence, neurons are not connected to every single pixel anymore. The

29

Figure 12: A convolutional layer, taking a 5× 5× 3 image (left) as input. The third
dimension represents the number of color channels. This convolutional layer
has five 3×3 filters, resulting in five seperate layers of neurons (right). Note
that filters always operate on the full depth of the input.

receptive field is a rectangular filter containing weights which learn to recognize a
specific feature of the input. These weights are shared across each neuron and therefore,
they’re able to recognize features position-independently. One filter learns just one
feature but a convolutional layer has multiple filters which results in multiple layers of
neurons. Thus, convolutional layers can be thought of as three-dimensional volumes,
visualized in Figure 12.
Filters can be represented as blocks, sliding across the image to compute the activations
of its corresponding neurons. Thereby, they take the dot product of the filter values w
and the input volume of their current receptive field x and add a bias b to it. Suppose
a convolutional layer whose input layer has a depth of 3, the filter size is 5× 5 and the
number of filters is 10. Consequently, each filter has 5× 5× 3 + 1 = 76 parameters
where the +1 represents the bias. Since there are 10 filters, the layer has exactly 760
learnable parameters, regardless of the input’s width and height.
While sliding the filter across the input, we may also choose an interval to skip certain
pixels. This interval is referred to as the stride. For example, a stride of 3x2 means
each time we move the filter horizontally, we skip two pixels, and each time we move
the filter vertically, we skip one pixel. In addition, a pad can be used to add additional
zero valued pixel to the border of the input in order to preserve the spatial size.
Powerful modern convolutional neural networks typically consists of lots of stacked
convolutional layers. The idea is that the features in each layer become increasingly
more abstract as we go deeper into the network. Filters in the first convolutional layer
typically detect small characteristics such as edges. Then, the second layer may combine
the features from the first layer into curves or other shapes. Eventually in some deeper
layer, the composition of higher level features starts to represent meaningful objects.

30

4. Autonomous Driving

In this Section we present two implementations of autonomous racing using deep
learning: the established end-to-end approach and our new trajectory prediction
approach.

4.1. End-to-End Approach

In the autonomous driving terms, end-to-end means that a neural network model
directly outputs steering commands based on sensory inputs such as camera images.
Nvidia developed a neural network called PilotNet [7] that performs lane keeping on
real cars. PilotNet receives a single image of a front-mounted camera as input and
outputs a steering angle. The model is trained based on collected data from human
driver sessions. Since the network seemed to be very promising, our idea was to adapt
it for our application and to see whether it can be trained to drive the car fast, reliably
and competitive on the racing track.

4.1.1. Preprocessing

Before the image is passed to the network, we involve some preprocessing. The original
image resolution produced by the camera is 744× 480. We select the region of interest
by cropping the upper 744× 200 pixels since these do not reveal any useful information
about the track. Then, we resize the cropped image to have a resolution of 200× 100.
Note that our network implementation differs in this aspect from PilotNet which resizes
its image to 200× 66 pixels. However, the lane markings are quite thin so by further
reducing the resolution, some markings in curves would simply disappear.
As proposed by Nvidia, we also convert the RGB image into the YUV color space.
Since the environment is mostly black and white, we would expect the RGB channels
to be the same anyway. The Y channel may yield more variation across the channels,
since it represents luminance and not color value.
We apply batch normalization to the input layer which makes each individual pixel
value’s distribution zero mean and unit variance. Input normalization is a commonly
used technique as it helps the gradient descent algorithm to improve convergence time.
Ioffe and Szegedy provide an in-depth discussion about the underlying theory which
goes beyond the scope of this work [17].
During training, each sample has a 60% chance to be augumented. When being
augumented, we apply a random change of brightness to the image. Furthermore,
there’s another 50% chance to flip the image horizontally. Of course, in this case we
also change the sign of the steering angle. The idea behind this augumentation is that
the model may learn how to drive in both directions based on the same image.

31

4.1.2. Neural Network Model

Figure 13 shows our model’s architecture which is an adaption of PilotNet. There
are five convolutional layers which are intended to be feature extractors and their
parameters were chosen empirically by Nvidia.

Figure 13: End-to-end model architecture based on PilotNet.

The first three convolutional layers feature a kernel size of 5 × 5 and a 2 × 2 stride
whereas the two last convolutional layers only have a 3× 3 kernel and a 1× 1 stride.
This is due to the fact that the output surface becomes increasingly smaller throughout
the network. Furthermore, the filter size increases from 24 in the first layer up to 64 in
the fourth and fifth layer which compensates the decrease in output volume size and
adds more higher level features.
The three-dimensional output volume of the last convolutional layer is flattened into a
one-dimensional vector of activations. This means that there are 5× 18× 64 = 5760
neurons which are connected to the following 100 neurons of the first dense layer 5.
There follow another two dense layers of 50 and 10 neurons respectively.
The final output layer consists of two neurons which represent the steering angle and
the throttle. PilotNet only outputs the steering angle so this is another modification

5A dense (or fully connected) layer is just another name for a layer of stacked neurons as presented
in Section 3.2.

32

as we wanted our model not only to be a lane keeping system but also to control the
speed.
We use ReLU activation functions throughout the network except for the two output
nodes which have linear activation functions. Unfortunately, Nvidia doesn’t state
explicitly which activation functions they use in PilotNet. However, it’s quite likely
that ReLU functions are employed due to their enormous popularity [39]. For computing
the loss, we take the mean squared error measure and trained the network using the
ADAM optimization algorithm [20]. ADAM is similar to the gradient descent algorithm
but adds some improvements to get to a local minimum more quickly. Our learning
rate is set to γ = 5× 10−4 which was discovered by experimenting.
We wrote the model in Python using the high-level neural network library Keras which
uses TensorFlow for the backend. This makes it easy to implement the network by
simply using the Keras layers API. The full code for implementing the end-to-end
model is given in Appendix A.1.

4.1.3. Training

We split the recorded data into a training set (80% of all samples) and a validation
set (20% of all samples). An extra test set is not required since testing happens
directly on the racing track. The two sets are randomly sampled into batches of size
40. Furthermore, the model is trained in epochs. In each epoch, the model processes
the entire training set.
Training was very slow on the laptop we used initially which was a Lenovo Thinkpad
L450 with an Intel Core i5 5200U and 8 GB memory. It took hours to train the neural
network reasonably well on our datasets which made the process of model tuning very
time consuming. Therefore, we wanted to train our model on a powerful GPU which
speeds up learning due to its parallelization capabilities. The new training system
contains an Intel Core i7 2600K with 4 cores, 16 GB memory and an Nvidia GTX
1080. However, to take advantage of the GPU, we had to adapt and optimize the data
loading and preprocessing procedure.
To provide the training algorithm with data, we implemented batch generators which
are callbacks to generate the next training or validation samples. Whenever the batch
generator was called, it was reading 40 images from the hard drive into memory which
was then sent over to the GPU. Since reading from hard drive is slow, most of the
time wasn’t spent on training but on loading data. The solution was to simply cache
as many images as possible into the 16 GB memory. As a result, we could reduce the
training time by a factor of 12 in our particular case.
Of course, when increasing the size of the dataset, we would also have to increase the
memory size on the machine in order to maintain the same level of speedups. However,
since our largest dataset only contained about 40000 images, this wasn’t a big issue.

33

4.1.4. Dataset

To make the system move autonomously, we had to collect data by driving the car
ourselves on the racing track. Therefore, we created two datasets. In the first dataset,
we were trying to drive the car as close as possible on the track’s center line which
is depicted in Figure 14(a). The second one was produced by driving the car on an
ideal line which is illustrated in Figure 14(b). By ideal line, we refer to the strategy of
keeping the wheels mostly straight in order to accelerate as long as possible. The idea
is to exploit our excessive motor power to outperform the competition.

(a) Center line. (b) Ideal line.

Figure 14: Illustration of the driving strategies performed on the racing track to record
two datasets.

Both datasets contained about 10000 images of driving. For the center line session,
we were driving 12 laps with relatively slow speed. During the ideal line session, we
recorded 28 laps but at the maximum speed which we could still drive without leaving
the track. It should be noted here, that even though we recorded more laps in the
second run, the datasets contain roughly the same number of images. This is due to
the fact that we were simply driving faster while recording the ideal line.
We like to mention here that we actually recorded more data than 20000 images. In
addition, we built our own test tracks in our office and performed several tests on them
but we think that the two described datasets are the most representative and decision
leading ones. Furthermore, since we changed the camera mounting position a couple
of weeks before the final racing, we couldn’t use the data we had previously recorded
anymore. Nevertheless, this was the correct decision as Figure 15 shows the difference
between the two setups. The car gained a much cleaner, wider and undistorted overview
of the track. In fact, this becomes even more crucial for the trajectory prediction
approach.

34

(a) Low-mounted camera position. (b) High-mounted camera position.

Figure 15: Different camera positions.

4.1.5. Test Results

We trained our neural network model with the center line and ideal line datasets over
50 epochs using the same parameters.

Loss Analysis

Figure 16: Training and validation loss of the model when trained with the center line
and ideal line datasets over 50 epochs.

Figure 16 shows the loss diagram during training. We can observe that during both
runs, the model didn’t overfit to the training data since the validation loss does not
tend to increase. The model seems to have more problems learning the ideal line
dataset since the validation loss of the center line dataset is about 33% lower. Since
we recorded 28 laps in the ideal line set, it contains much more variation compared to
the 12 laps of the center line run. Furthermore, in the center line dataset, the steering
angle heavily corresponds to the curvyness of the center lane markings directly in front

35

of the car. This is not the case when driving the ideal line since there are cases when
the car drives straight even though the track makes a slight curve.

Visualization
To have some clue about which features of the image the neural network takes into
account, Figure 17 illustrates saliency maps [35] based on some samples of the track.
Saliency maps visualize the gradients from the network’s output with respect to the
input pixels. The intuition is that if the gradient of a certain pixel input has a high
value, it has much influence on the output and is important to the network. In Figure 17,
we computed the gradients from the output of the fifth convolutional layer using guided
backpropagation [37] and layered them over the original image.

(a) Saliency maps of the model trained with the center line dataset.

(b) Saliency maps of the model trained with the ideal line dataset.

Figure 17: Saliency maps.

On the center line saliency maps in Figure 17(a), we can clearly see that the model
primarily looks at the lane markings and even ignores the reflections on the image at
the top right. However, on the ideal line saliency maps in Figure 17(b), the markings
are not nearly as much highlighted. It also seems to be the case that the model is
triggered by noise and reflections seen at the top middle and top right images.

36

Driving Behavior
To test our car, we were driving it in the same environmental conditions that prevailed
during the recordings. Then we performed another test in the evening to see how it
reacts to different lighting conditions.
In the first test, the car was indeed behaving quite similar to the way we were driving
it manually. It could both stay on the center line and also adapt the driving behavior
of the ideal line. We don’t actually have a robustness metric but the car would surely
perform valid rounds in most of the ten available attempts under the given conditions.
However, this appeared to be quite different during the second test. Our car had
severe problems to reliably stay on the track. The drastic change in behavior was quite
unexpected since we augumented the dataset with different brightness settings which
should actually lead to a better generalization ability. Maybe this problem can be fixed
by extending the datasets with recordings in various other lighting conditions.
A much bigger problem turned out to be that we were not able to scale up the speed.
By doing so with any dataset, the car was always leaving the track very soon. We
believe that the main cause of this problem was produced by the slow steering of the
servo. While the human driver adapts to this problem by intuitively steering earlier,
the neural network is unable to take these dynamics into account. Replacing the servo
improved the situation a little bit but we still didn’t nearly reach superhuman level of
racing.
We discovered another unpleasant property of the end-to-end approach: the car’s ability
to learn a certain driving behavior depended heavily on the way we performed steering
inputs. Therefore, we created two recordings while driving the car on the center line.
During the first run, we maxed out the steering input for a split of a second whenever
we had to perform any course corrections. This means that there exists basically only
three steering inputs: full left, full right and neutral. During the second run, we pushed
very gently on the controls to perform smooth transitions to the input. While the car
was driving well when fed with the data from the second recording, by training it with
the first recording, it was barely able to drive a single lap.
This result might be inferred as follows. Imagine that we are creating a dataset by
trying to keep the car as closely as possible on the center line but our inputs are only full
left, full right and neutral. Next, consider driving a wide left curve. In order to keep the
car on the center line, it’s not possible to consistently maintain full left as input since
the car would sheer off too far. Therefore, one has to quickly alternate between full left
and neutral at a certain frequency to follow the line safely. Let’s consider a sequence
of consecutive images in this dataset. These images look quite similar to each other
due to high recording frame rates. However, the sequence possesses a distribution of
extremely dissimilar steering angles. If similar training inputs have strongly dissimilar
labels, the network may either learn to approximate the mean of the label distribution
or overfits by learning the subtle and irrelevant differences in these inputs. This is
due to the nature of the learning process being just an optimization algorithm which

37

tries to minimize the error between the network’s output and the labels. In both cases,
the car performs extremely poorly as the neural network is unable to reproduce the
actual driving behavior. This emphasizes the fact that the success of the employed
deep learning techniques depend heavily on the choice of training data.
Our conclusion is that the end-to-end approach might seem to be an elegant way to
implement a system. However, it has some serious downsides when being applied to
autonomous racing. Training the car to obtain a desired driving behavior requires
profound manual driving skills. Therefore, the vehicle will not perform much better
than the human steering the car during the recordings.

38

4.2. Trajectory Prediction Approach

Based on the experiences we gained using the end-to-end approach, we asked ourselves
two questions:
• Can we design a system that uses deep learning to process images into steering

informations but being easy to train at the same time?
• Can we scale the speed such that the car is able to outperform any manually

driven lap times?
In the following, we present the new design we came up with by considering these two
requirements.

4.2.1. Overview

Our concept exploits the information retreived by the wheel encoders to construct
an odometry which gives a path of positions we were driving along. Based on some
position p0 in the odometry we can easily compute the position the car will be located
at in a given distance. This allows us to sample the coordinates (p1, p2, p3) which
represent the car’s future locations at 0.6, 1.2 and 1.8 meters ahead of p0. We then
transform these coordinates into a local coordinate system where we assume that the
car is currently located at (0, 0) and pointing at direction (0, 1). After applying the
transformation, the new points (p′1, p′2, p′3) represent a local trajectory which the car
follows along. Figure 18 further illustrates this coordinate transformation which will
be explained in more detail later on.
We modified the output layer of our end-to-end model to predict these trajectory
coordinates instead of the steering angle and throttle values. Thus, we refer to this
approach as trajectory prediction. For each image in our dataset, we compute the
corresponding local trajectories the car was driving during the recording sessions. These
image-to-trajectory mappings become the new training data which the model is fed
with. Finally, during autonomous mode, we compute the steering angle and target
speed based on the predicted trajectories using an appropriate driving model.
The core idea behind this approach is that we no longer train the neural network on
how to drive the car but instead it only learns where it should be located at in the
future. This has several advantages. First, the trajectories the network is trained
with are computed independently of time. This means, during recording, we can drive
the car around the track as slowly as required. Therefore, the car’s behavior doesn’t
depend on manual driving skills anymore.
Secondly, we gain control over the driving dynamics. Assume the neural network
would always predict the desired trajectories. This allows us to compute the speed and
steering angle based on the car’s physical limits. Obviously, a complex physical driving
model would be required which was not possible to implement during the given time
scope. However, we did make use of the fact that we we’re able to predict straight

39

lines and curves to adapt the speed accordingly.
In the following sections we give an in-depth explanation about the implementation of
our trajectory prediction approach.

(a) Current camera image of the car, driving along
our test track.

(b) Recorded odometry data. The blue dot
shows where the car is currently located. The
red dots reveal the future locations in 0.6, 1.2
and 1.8 meters.

(c) The trajectory (red dots) computed by
projecting the odometry coordinates into a
local coordinate system were the center is
the car’s current position. The green dots
represent the network’s predicted trajectory
given the current camera image as input.
The circles give the turning radius which is
then processed into a steering angle.

Figure 18: Illustration of the coordinate projection and the trajectory prediction.

40

4.2.2. Odometry

An odometry is a sequence of positions which are computed by estimating the car’s
movement based on the wheel encoder ticks. It’s a relative positioning model which
means that position pt is evaluated based on pt−1 and the estimated change of position
obtained by the current sensor output. Such models are sensitive to errors since any
slight deviation from the actual position is accumulated over the sequence.

Positioning Model
Given the vehicle’s current position pt−1 = (xt−1, yt−1) and orientation ωt−1, we compute
its new position pt and orientation ωt using the following dead-reckoning equations [19].
Initially, we choose p0 = (0, 0) and ω0 = 0.
Let dl and dr be the diameters of the rear left and right wheels respectively and let η
be the number of encoder ticks per wheel revolution. The travelled distance per tick
on each side is given by

cl = πdl
η

cr = πdr
η
. (16)

Suppose that Nl and Nr are the number of ticks counted by the wheel encoders during
the current time interval. Then, the travelled distance for each wheels is

∆sl = Nlcl ∆sr = Nrcr. (17)

We take the average to model the actual travelled distance of the car (or the imaginary
center wheel):

∆s = ∆sl + ∆sr
2 . (18)

The change in orientation is approximated by

∆ω = ∆sr −∆sl
T

(19)

where T is the distance between the points where the rear wheels are touching the floor.
We refer to this distance as the track width. Now, we can get the new orientation

ωt = ωt−1 + ∆ω. (20)

Finally, we update the position using simple trigonometric equations

xt = xt−1 + cos(ωt)∆s
yt = yt−1 + sin(ωt)∆s.

(21)

41

Calibration
As mentioned already, odometry is very prone to errors. These errors can be classified
into systematic and non-systematic errors [19]. Non-systematic errors are caused by
the fact that the vehicle mostly doesn’t drive in a perfect environment. For example,
the wheels may be affected by slippage resulting in the registration of wheel revolutions
that didn’t actually move the car forward. Even small irregularities of the floor such
as bumps lead to errors since Equation 17 doesn’t model horizontal displacements.
Systematic errors are caused by measurement inaccuracies of the wheel diameters and
the track width. For instance, by manufactoring rubber wheels, it’s hard to avoid at
least some slight deviations in size. Uncertainty is involved in measuring the track
width since there doesn’t exist a true single point where the wheels are in contact with
the floor. In addition, by driving in a curve, the car might tilt to the side which shifts
these points slightly along the wheels.

(a) Odometries using the original
parameters.

(b) Odometries used for calibra-
tion (outliers excluded).

(c) Odometries using the opti-
mized parameters. The colored
dots represent points where the
error is measured.

Figure 19: Reconstructed odometries using the ticks obtained by driving around a
3× 3 meter square (black dots) in clockwise and counter-clockwise direction
respectively.

Fortunately, compared to the inevitableness of the non-systematic error, we can min-
imize the systematic error by performing a calibration procedure. Therefore, the
objective is to minimizes the error between a computed odometry (using the equations
above) and a corresponding ground-truth odometry by optimizing the parameters dl,
dr and b.
In our case, we were driving the car along a 3 × 3 meter square by recording the

42

accumulated wheel encoder ticks Nl and Nr in a 20 millisecond time interval. We
created five runs in clockwise and counter-clockwise direction respectively. The initial
parameters were measured using a ruler which gave us the following dimensions:

η = 120 dl = 11cm dr = 11cm T = 27.5cm.

The resulting odometry is shown in Figure 19(a). Using these parameters, the car’s
position seems to drift heavily apart from the square. In addition, we observed that even
though we were keeping the vehicle precisely on the line, there exist some substantial
outliers which couldn’t possibly be caused either by inaccurate parameterization or by
incorrect driving. Therefore, during optimization, we only took those runs into account
which seemed to be the most reasonable ones (see Figure 19(b)).
We measure the error between a reconstructed odometry and the ground truth odometry
by meaning the squared distances between the final position at tfinal and between
positions at manually selected indices where we know the car was driving straight.
At those selected indices, we only take either the distance in x- or y-coordinate into
account, depending on whether the car was moving horizontally or vertically in the
particular section.
For example, the blue dots in Figure 19(c) represent indices τi where we know for
sure that the vehicle was heading vertically. Therefore, the x-coordinates of the
reconstructed odometries at positions τi should be about 3.
In order to define the error function for the optimization problem, we need some
formalism. An odometry can be described as a function o(p0,Θ, N, t) [8] where
• p0 is the start position (in our case p0 = (0, 0)),
• Θ = (cl, cr, T) is the parameter vector,
• N represents the wheel encoder ticks and
• t is the current time or index.

Let N cw
i and N ccw

i be the number of ticks of the i-th run along the 3× 3 meter square
in clockwise (cw) and counter-clockwise (ccw) direction respectively. Furthermore, let
τ cwj,i and τ ccwj,i be the manually selected indices for each individual run where
• τ cw1,i and τ ccw1,i is an index in the first horizontal section of run i,
• τ cw2,i and τ ccw2,i is an index in the first vertical section of run i,
• τ cw3,i and τ ccw3,i is an index in the second horizontal section of run i,
• τ cw4,i and τ ccw4,i is an index in the second vertical section of run i and
• τ cw5,i and τ ccw5,i is the final index of the odometry of run i.

Given ticks data N with n runs in clockwise and m runs in counter-clockwise direction

43

and indices τ , our error function E is defined as:

Ep0,N,τ (Θ) = 1
2

(
1

5n
∑n
i=1

[
o(p0,Θ, N cw

i , τ cw1,i)2
y

+(3− o(p0,Θ, N cw
i , τ cw2,i)x)2

+(−3− o(p0,Θ, N cw
i , τ cw3,i)y)2

+o(p0,Θ, N cw
i , τ cw4,i)2

x

+‖o(p0,Θ, N cw
i , τ cw5,i)‖2

]
+ 1

5m
∑m
i=1

[
o(p0,Θ, N ccw

i , τ ccw1,i)2
y

+(3− o(p0,Θ, N ccw
i , τ ccw2,i)x)2

+(3− o(p0,Θ, N ccw
i , τ ccw3,i)y)2

+o(p0,Θ, N ccw
i , τ ccw4,i)2

x

+‖o(p0,Θ, N ccw
i , τ ccw5,i)‖2

])

(22)

where ‖ · ‖ is the euclidean distance.
We approximate the gradient ∇E using finite differences and apply the Broyden-
Fletcher-Goldfarb-Shanno algorithm (BFGS) [28] to compute the optimal parameters
Θ. The resulted odometries are shown in Figure 19(c).
We can see that the final positions and the overall shape of the odometries heavily
improved. However, given the fact that the runs were performed on a reasonably small
3× 3 meter square, the error is still very large.
We tried out various other optimization techniques, including the popular UMBmark
[19] method as well as other error functions [8] and even tried to manually calibrate
the parameters. Nevertheless, the presented method provided the odometries which
seemed to be closest to the actual square.

Trajectory Extraction
Let f(pt, s, t) be a function computing the position on the linearly interpolated path pt
which is reached by following this path for distance s while starting at index t. Given
odometry (pt, ωt), to compute the trajectory Q′ = (q′1, ..., q′n) at index τ , we sample
positions Q = (q1, ..., qn) at distances D = (D1, ..., Dn) apart from pτ by computing

qi = f(pt, Di, τ) (23)

To get Q′, we apply the transformation

q′i = R
(
π

2 − ωτ
)

(qi − pτ) (24)

44

where R is the rotation matrix

R(α) =
(
cos α −sin α
sin α cos α

)
.

In our experiments, choosing n = 3 positions with distances d1 = 0.6 m, d2 = 1.2 m
and d3 = 1.8 m away from the car’s current position pτ turned out to work well. Larger
distances may lead to bad model predictions since when entering a sharp turn, the
camera cannot see much of the track. In this situation, the neural network may not be
able to use the visual information of the track to predict a position which is far in the
future and might learn different featurers instead during training.
We think that choosing more predicted positions to increase the resolution of the
trajectory is unnecessary as three or even only two positions are enough to infer the
steering angle in our case.

4.2.3. Neural Network Model

The only aspect in the neural network architecture that differs from the one presented
in Section 4.1.2 is the output layer. We replaced the nodes for the steering angle
and throttle with two nodes for each trajectory position which output their x- and
y-coordinates respectively. Just as before, MSE is used as the error measure. The
Keras implementation of the network is shown in Appendix A.2.
There are only slight changes in the preprocessing and training procedures. For example,
during augumentation, instead of flipping the steering angle’s sign, we now flip the
sign of the x-coordinate of the trajectory positions.

4.2.4. Driving Model

In the following, we describe how to get from a predicted trajectory to a final steering
angle and throttle command.

Controlling the Steering Angle
We model the car’s motion using a bicycle model as shown in Figure 20. Assuming
no slippage, the car follows along a circle with radius r when setting steering angle α.
Given α the circle’s radius is modeled by rα and given r the required steering angle is
represented by αr using the two equations

rα = b

tan(α) αr = arctan

(
b

r

)
(25)

where b is the distance between the front and the rear axle which we refer to as the
wheel base.

45

Figure 20: Illustration of the bicycle model.

Let Q = (q1, ..., qn) be a trajectory, our goal is to find steering angle α resulting in
a turning circle of radius |rα| and center (rα, 0) which fits the trajectory best (see
Figure 18(c) again). We can formulate this objective as another optimization problem
where we want to find the scalar α which minimizes the error function

EQ(α) =

1
n

∑n
i=1(qi,x)2 if α = 0

1
n

∑n
i=1(‖qi − (rα, 0)‖ − |rα|)2 otherwise

(26)

given trajectory Q and the constraint αmin ≤ α ≤ αmax. This formula computes the
mean squared distance between point qi in the trajectory and the point lying on the
border of the circle constructed by r which is closest to qi. Note that the special
treatment of α = 0 is required due to the fact that r0 is not defined. In this case, we
just take the distance between qi and the x-axis.
Instead of applying a numerical approximation method to find the optimal αopt, it
turned out to be most efficient to simply compute

αopt = arg min
α
{EQ(α) | α ∈ Z, αmin ≤ α ≤ αmax}. (27)

So we just iterate over the integer set of steering angles6 and keep α where EQ(α) is
lowest. The loss in precision is negligible due to the low accuracy of the car’s servo
which exhibits a tolerance of about ±2◦.
It should be mentioned that we only considered the trajectory points Q = (q1, q2) to fit
the turning circle so we left out q3 which is 1.8 m apart from our current position. By
leaving it in, the car starts to turn too early in front of curves and leaves the track
as a consequence. In addition, small course corrections in q1 and q2 would be very
likely to average out. Therefore, choosing Q carefully is crucial to fine tune the driving
behavior.

6In our case, the maximum steering angle turning the wheels to the left is αmin = −30◦ whereas
αmax = 30◦ turns the wheels most to the right.

46

Controlling the Speed
A desired driving behavior is to accelerate on straight lines and maintain a lower speed
in curves to provide stability and avoid slippage. Due to the lack of time, we employed
a very simple model to implement this behavior. Given trajectory Q = (q1, q2, q3), we
just use the x-coordinate of q3 as a curve detector and compute the target speed w(Q)
(in meter per second) with the formula

w(Q) =

ν1 if |q3,x| ≤ χ

ν2 otherwise
(28)

where
• ν1 is the target speed when driving straight,
• ν2 is the target speed when detecting a curve and
• χ is the threshold in the x-coordinate of q3 which decides when to use v1 or v2.

Thus, there are only two possible target speeds ν1 and ν2. The choice of χ determines
how early the car should start to slow down to ν2 in front of a curve. Obviously, these
three constants have to be discovered by experimenting which is a downside of this
approach.
After determining the target speed, we have to set the motor torque accordingly to
maintain it. In each time step t we compute the error between the target speed wt and
the measured speed vt

et = wt − vt (29)

where vt is computed by

vt = ∆s
∆t (30)

and where ∆s is taken from Equation 18. Our objective is to apply corrections ut to
the motor torque value zt ∈ [−1, 1] which minimizes the error et over time. Therefore,
we utilize the popular proportional–integral–derivative controller (PID-controller) [6]
[44] which calculates an appropriate correction with

ut = Kpet +Ki

t∑
t′=0

(et′∆t) +Kd
et − et−1

∆t (31)

where Kp, Ki, Kd ∈ R≥0 are the coefficients for the proportional, integral and derivative
terms respectively. We ended up choosing Kp = 5 · 10−3, Ki = 0 and Kd = 1 · 10−3

after tuning these coefficients manually. Using this configuration, we compromised a
bit of error overshooting for a more rapid acceleration and deceleration.

47

5. Results

In this Section we present the results of our trajectory prediction approach. We do
an offline analysis again and then show how it performed during the final race. In
addition, we point out some issues of the system and propose possible improvements.

5.1. Wheel Encoder Anomaly

During our tests using the trajectory prediction approach, we noticed that each time the
car performed a tight right turn, it was strongly accelerating. However, when driving
left turns or straight, the controller was keeping the target speed just fine. It turned out
that there exists an anomaly in the measurement of the wheel encoder ticks. We did
three experiments where we were driving the car manually for a fixed distance s and
recorded the wheel encoder ticks for each run. In the first experiment, we were driving
a circle in clockwise direction while keeping steering angle α = 30◦. We measured
the radius r of that circle and determined s as the circumference s = 2πr. During
the second experiment, the exact same circle was followed but in counter-clockwise
direction with steering angle α = −30◦. Finally, in the third experiment, we were
keeping the vehicle on a straight line for distance s.

Experiment 1
clockwise circle (α = 30◦)

Experiment 2
counter-clockwise circle (α = −30◦)

Experiment 3
straight (α = 0◦)

811

1,426

1,491

319

898

745

492

528

746

acc. left ticks
acc. right ticks

acc. left+right ticks

Figure 21: Results of the three experiments driving the car manually for a fixed distance.
The diagrams show that the accumulated number of emitted encoder ticks
are about 45% less when driving a clockwise circle as compared to when
driving a counter-clockwise circle or a straight line with the same travelled
distance.

Since the car covered the same distance across these runs, we would expect the
accumulated number of recorded wheel ticks to be about the same too. For each
experiment, Figure 21 shows the accumulated number of ticks recorded by the left and
right wheel encoder. To make sure that our measurements are reliable, we repeated
each experiment three times and averaged the results. We can see that our expectations

48

hold for the second and third experiments. However, when driving the clockwise circle,
the total number of accumulated ticks is about 45% less compared to the other runs.
These results explain the misbehavior of the speed controller. When driving a clockwise
turn, the number of emitted ticks reduces and consequently the measured distance over
time decreases too even though the car maintains the same actual speed. Therefore,
the PID controller thinks that the car slows down and misleadingly increases the motor
torque which causes the aforementioned acceleration. In addition, the experiments
may also explain the bad results of the odometry calibration. Unfortunately, we were
not able to fix this problem since there wasn’t enough time. In order to mitigate this
problem, we decided to only drive counter-clockwise runs during the final race and
during the recordings for our dataset.

5.2. Dataset

Our final dataset includes about 17000 samples of recordings while driving the car on
the ideal line in the noon and in the evening. However, when only following the ideal
line, the neural network doesn’t learn how to behave in different situations such as
when leaving the track accidentally. Therefore, we added the functionality to pause
and resume the recording session using the buttons on our game controller. This allows
us to hit pause and drive the car into a certain position that hasn’t been covered by the
dataset yet. Then we resume the recording session and lead the car back to the ideal
line. We repeated this procedure to teach the car how to behave for various deviations
from the ideal line.
Since we had no indication of whether we were currently pausing or resuming, after
the final race it unfortunately turned out that we didn’t include another 7000 samples
by forgetting to hit the resume button.

5.3. Final Race

We can list the important parameters for the trajector approach as

Ω = (cl, cr, T,D, b, ν1, ν2, χ,Kp, Ki, Kd)

which were all introduced previously. The concrete values used in the final race are
given in Appendix B.
We trained the nerual network over 50 epochs with learning rate γ = 1× 10−4. The
training and validation loss were both converging so there didn’t seem to be an indication
for overfitting.
Figure 22 shows saliency maps using the trained trajectory prediction model. Although
there seems to be much interest on the lanes (especially on the center line), especially
the walls and reflections became salient objects which is not really desired.

49

Figure 22: Saliency maps of the trajectory prediction model.

We decided to use the trajectory prediction approach for the final race since we managed
to make the car much faster on both the office and the final track compared to the
end-to-end approach. Two days before the race, our best lap time was about 8.5
seconds. To get a sense of that speed, there was no competitor who was able to drive
a lap under 7 seconds. The best lap-time performed by a human driver was about 6.9
seconds.
Despite being reasonably fast, the car did leave the track quite frequently. However,
it was capable of returning back to the track surprisingly often. We think that the
camera’s large overview and the specially recorded situations to return to the ideal
line definitely helped in this regard. The overall driving behavior was much as we
expected. It was following the ideal line most of the times and did manage to accelerate
on straight lines and was braking in front of curves.
Our strategy was to sacrifice stability for speed. Even though the end-to-end model
which was trained on the center line dataset would have probably been making fewer
mistakes, there was no chance of winning the competition had it been used. The rules
gave room to drive riskfully since we only had to perform a single valid round. Our
best valid lap-time during the final race was 10.0 seconds which we achieved the third
place with. The winner’s lap-time on this day was 8.93 seconds.
It turned out that all cars including ours had severe problems with different lighting
conditions. There was a short preparation time at 4 p.m. where the teams were allowed
to perform the last runs on the track. Nobody ever trained their car at that time of
day and lighting. The result was that the vehicles were barely able to drive a single lap
without leaving the track. By asking around, we figured out that every competitor was
using deep learning approaches to process the camera frames. This raises questions
about the overall generalization ability of neural networks.

50

5.4. Limits

There are several reasons why we think that our trajectory approach hasn’t reached its
full potential. The decision to lowering the speed in curves didn’t stem from the fact
that the wheels started to slip. The vehicle rather seemed to not react aggressively
enough. However, we do not think that there is an issue regarding the computational
speed since we measured that the system processes 20 frames per second on average.
In our opinion, this should be more than enough visual information between two
consecutive frames to react even to sharp turns just in time. Also, we belief that after
replacing the servo, the steering speed wasn’t an issue as well.
What we do belief is that the actual problem source was rooted in the non-systematic
error of the odometry which was produced by the weird anomaly of the wheel encoder
output. Even after calibration, the odometry comprised too large deviations from
the actual driven path. Since the odometry constructed the trajectories which were
used as the labels in our training data, the non-systematic error propagated into the
predictions of the neural network. Furthermore, we noticed that the steering servo
produced a rather non-linear translation between the input angle and the actual angle
of the wheels which is another source of inaccuracy.

5.5. Possible Improvements

There has been lots of research on how to implement localization methods for robots.
More advanced techniques such as simultaneous localization and mapping (SLAM)
may be employed in order to establish a more accurate position estimate. In order
to use SLAM, it is necessary to provide odometry data as well as periodic scans of
the environment which are often acquired by LIDAR sensors. Besides dead-reckoning
with wheel encoders, there exist several other methods on how to retrieve odometry.
For example, visual odometry [27] determines the travelled distance using camera
images. Zhang and Singh propose a method to extract odometry data from LIDAR
[43]. Furthermore, one can combine information from different sources using bayes
filters such as the Kalman filter or the particle filter in order to further improve the
state estimate [38]. For instance, we could fuse the wheel encoder odometry with data
obtained from a relatively cheap inertial measurement unit (IMU) which measures
linear acceleration and rotational velocity [10].
There could be more work into finding a network architecture that may generalize better.
For example, one may use recurrent neural networks which incorporate information
about the past. This could especially help in tight curves where the camera cannot
see much of the upcoming section of the track so it’s not possible to make reliable
trajectory predictions. Using some type of memory, the network would eventually
memorize the shape of the track before entering the turn.
Since it’s quite demanding to compute the output of the neural network on the odroid,
it may be advantageous to add additional hardware to increase the frame rate. For

51

instance, the Intel Movidius Neural Compute Stick [1] is a very compact computing
unit which is optimized for deep learning applications. It’s connected via USB and
specified to consume only 1 ampere of current. Therefore, it would be suitable for our
use case.
We found out that splitting the dataset into training and validation loss by random
sampling seemed to pose problems in our case. Because of large similarities between the
images while recording with high frame rates, the validation data becomes very similar
to the training data. Consequently, this destroys the meaning behind the validation
loss since it should actually reflect how well the model performs on new data. To
provide evidence to this hypothesis, instead of random sampling, we used the first 20%
of our samples as validation data and the remaining 80% as training data. Figure 23
shows a comparison between both methods by training the same network with the same
hyperparameters over 50 epochs. We can see that using random sampling, the training
and validation loss is almost exactly the same. However, with non-random sampling,
the validation loss is significantly lower than the training loss. Thus the neural network
performs considerably worse on non-training data. This example demonstrates that we
should carefully choose the training and validation data in order to retain a metric
of how well the car will perform on the racing track under untrained conditions. If
we then still observe an increase in validation loss, we’ll clearly know that the model
overfits so we may apply techniques discussed in Section 3.3.4.

Figure 23: Comparison between training and validation loss using random sampling
and non-random sampling to create the training and validation datasets.

In order to unleash the full potential of the trajectory prediction approach, the driving
model has to be adapted to take the vehicle’s physical properties such as tire friction
into account.

52

6. Conclusion

In this work, we presented two methods for autonomous racing with deep learning. Of
course, this problem could have also been solved using traditional image processing
techniques including contour and edge detection. However, this requires lots of hand-
written rules and tweaking to figure out where the lanes are, how to filter noise such as
reflections and how to steer accordingly. It’s far more elegant to create a system that
learns this processing by itself.
Unfortunately, the end-to-end approach turned out to be suboptimal when applied
to racing. Since the neural network tries to mimic the manual driving behavior, the
system is limited by human capabilities and does not scale well to higher velocities.
Our trajectory prediction approach overcomes this problem by using deep learning
only as a subcomponent to predict the vehicle’s optimal future path. This provides the
flexibility to incorporate an arbitrarily complex driving model to transform a trajectory
into steering commands. In addition, collecting training data becomes much easier as
it’s just a process of guiding the vehicle along the desired path on the track, regardless
of the speed.
Due to strange problems with our wheel encoders, we were not able to show the full
potential of this approach. Even the best neural network architecture is worthless
without good training data. Better sensors and more advanced algorithms are required
in order to create quality localization data to train the model with. We belief that
if this had been the case, we would have performed considerably better at the Deep
Berlin Robocars challenge.
Still there remain some open questions regarding deep learning aspects. Despite the
fact that our adaption of Nvidia’s PilotNet architecture worked in principle, it is unclear
whether there exist better architectures and hyperparameter configurations for our
particular application. For example, we don’t know what would have happened if we
had used fewer convolutional layers. Overly complex models are known to generalize
worse.
Further investigations will be needed to answer the question why almost every car
performed poorly on lighting conditions it hasn’t been trained on. It’s not clear
whether this was caused by problems in the network architecture or in the training
data. Therefore, future work has to concentrate on the generalization capabilities of
neural networks. Nevertheless, visualization techniques such as saliency maps already
help to detect the existence of such problems.
The results achieved by applying deep learning to image classification and object
detection make it a promising technique to design future autonomous systems. However,
this thesis showed that neural networks are not able to provide complete end-to-end
solutions for all applications yet. Until now, we should rather consider them a powerful
tool to help solving complex problems as part of a processing pipeline.

53

References
[1] Intel neural compute stick webpage. URL https://software.intel.com/en-us/

neural-compute-stick.

[2] The imaging source dfm 22buc03-ml webpage. URL https:
//www.theimagingsource.com/products/board-cameras/usb-2.0-color/
dfm22buc03ml/.

[3] Donkey car homepage. URL http://donkeycar.com.

[4] Semesterprojekt Hochautomatisiertes Fahren Dokumentation, 2018. URL
https://www2.informatik.hu-berlin.de/~hs/Lehre/2017-WS_SP-HAF/
20180524_SPHAF-Dokumentation.pdf.

[5] S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, and N. Navab.
Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology
images. IEEE Transactions on Medical Imaging, 35(5):1313–1321, May 2016.
ISSN 0278-0062. doi: 10.1109/TMI.2016.2528120.

[6] K. H. Ang, G. Chong, and Y. Li. Pid control system analysis, design, and
technology. IEEE Transactions on Control Systems Technology, 13:559–576, 2005.

[7] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. D. Jackel,
and U. Muller. Explaining how a deep neural network trained with end-to-end
learning steers a car. CoRR, abs/1704.07911, 2017. URL http://arxiv.org/
abs/1704.07911.

[8] D. M. Bradley. Odometry : Calibration and error modeling. 2005.

[9] M. Burgess. Roborace is building a 300kph ai supercar – no
driver required, March 2018. URL https://www.wired.co.uk/article/
roborace-car-formyla-e-robocar-uk-autonomous-race-denis-sverdlov.

[10] B.-S. Cho, W.-s. Moon, W.-J. Seo, and K. Baek. A dead reckoning localization
system for mobile robots using inertial sensors and wheel revolution encoding.
Journal of Mechanical Science and Technology, 25, 11 2011. doi: 10.1007/
s12206-011-0805-1.

[11] R. Collobert and S. Bengio. Links between perceptrons, mlps and svms. In
Proceedings of the Twenty-first International Conference on Machine Learning,
ICML ’04, pages 23–, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5.
doi: 10.1145/1015330.1015415. URL http://doi.acm.org/10.1145/1015330.
1015415.

[12] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th Inter-
national Conference on Machine Learning, ICML ’08, pages 160–167, New York,

54

https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick
https://www.theimagingsource.com/products/board-cameras/usb-2.0-color/dfm22buc03ml/
https://www.theimagingsource.com/products/board-cameras/usb-2.0-color/dfm22buc03ml/
https://www.theimagingsource.com/products/board-cameras/usb-2.0-color/dfm22buc03ml/
http://donkeycar.com
https://www2.informatik.hu-berlin.de/~hs/Lehre/2017-WS_SP-HAF/20180524_SPHAF-Dokumentation.pdf
https://www2.informatik.hu-berlin.de/~hs/Lehre/2017-WS_SP-HAF/20180524_SPHAF-Dokumentation.pdf
http://arxiv.org/abs/1704.07911
http://arxiv.org/abs/1704.07911
https://www.wired.co.uk/article/roborace-car-formyla-e-robocar-uk-autonomous-race-denis-sverdlov
https://www.wired.co.uk/article/roborace-car-formyla-e-robocar-uk-autonomous-race-denis-sverdlov
http://doi.acm.org/10.1145/1015330.1015415
http://doi.acm.org/10.1145/1015330.1015415

NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390177.
URL http://doi.acm.org/10.1145/1390156.1390177.

[13] M. de la Iglesia Valls, H. F. C. Hendrikx, V. Reijgwart, F. V. Meier, I. Sa, R. Dubé,
A. R. Gawel, M. Bürki, and R. Siegwart. Design of an autonomous racecar:
Perception, state estimation and system integration. CoRR, abs/1804.03252, 2018.
URL http://arxiv.org/abs/1804.03252.

[14] emo berlin.de. Abschlussrennen der deep berlin robocars challenge,
September 2018. URL https://www.emo-berlin.de/de/newsarchiv/news/
abschlussrennen-der-deep-berlin-robocars-challenge/.

[15] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[16] J. B. H. II and A. H. Waibel. A novel objective function for improved phoneme
recognition using time-delay neural networks. IEEE Trans. Neural Networks, 1
(2):216–228, 1990. doi: 10.1109/72.80233. URL https://doi.org/10.1109/72.
80233.

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http:
//arxiv.org/abs/1502.03167.

[18] S. Jain. An overview of regularization techniques in deep learning (with python
code), April 2018. URL https://www.analyticsvidhya.com/blog/2018/04/
fundamentals-deep-learning-regularization-techniques/.

[19] L. F. Johann Borenstein. Umbmark: a benchmark test for measuring odometry
errors in mobile robots, 1995. URL https://doi.org/10.1117/12.228968.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105,
USA, 2012. Curran Associates Inc. URL http://dl.acm.org/citation.cfm?
id=2999134.2999257.

[22] F.-F. Li, J. Johnson, and S. Young. Lecture 3: Loss functions and optimization.
April 2017. URL http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture3.pdf.

[23] F.-F. Li, J. Johnson, and S. Young. Lecture 6: Training neural networks, part 1.
April 2017. URL http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture6.pdf.

55

http://doi.acm.org/10.1145/1390156.1390177
http://arxiv.org/abs/1804.03252
https://www.emo-berlin.de/de/newsarchiv/news/abschlussrennen-der-deep-berlin-robocars-challenge/
https://www.emo-berlin.de/de/newsarchiv/news/abschlussrennen-der-deep-berlin-robocars-challenge/
http://www.deeplearningbook.org
https://doi.org/10.1109/72.80233
https://doi.org/10.1109/72.80233
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://doi.org/10.1117/12.228968
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture3.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture3.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf

[24] F.-F. Li, J. Johnson, and S. Young. Lecture 7: Training neural networks, part 2.
April 2017. URL http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture7.pdf.

[25] A. Liniger, A. Domahidi, and M. Morari. Optimization-based autonomous racing
of 1:43 scale rc cars. Optimal Control Applications and Methods, 36:628–647, 09
2015. doi: 10.1002/oca.2123.

[26] K. Majek. Self-racing cars 2017 – udacity team soulless, 2017. URL https:
//karolmajek.pl/self-racing-cars-2017-udacity-team-soulless/.

[27] D. Nistér, O. Naroditsky, and J. R. Bergen. Visual odometry. Proceedings of
the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., 1:I–I, 2004.

[28] B. Póczos and R. Tibshirani. Convex optimization cmu-10725 quasi newton meth-
ods. URL http://www.stat.cmu.edu/~ryantibs/convexopt-F13/lectures/
11-QuasiNewton.pdf.

[29] M. Quigley, K. Conley, B. P Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y Ng. Ros: an open-source robot operating system, 01 2009.

[30] U. Rosolia, A. Carvalho, and F. Borrelli. Autonomous racing using learning
model predictive control. In 2017 American Control Conference (ACC), pages
5115–5120, May 2017. doi: 10.23919/ACC.2017.7963748.

[31] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforcement learning
framework for autonomous driving. CoRR, abs/1704.02532, 2017.

[32] D. Shapiro. Go, autonomous speed racer, go! nvidia drive px 2 to power world’s
first robotic motorsports competition, April 2016. URL https://blogs.nvidia.
com/blog/2016/04/05/roborace/.

[33] D. Shapiro. Self-racing cars kick off first autonomous vehicle track day, June 2016.
URL https://blogs.nvidia.com/blog/2016/06/03/autonomous-vehicles/.

[34] S. Sharma. Activation functions: Neural networks,
Sep 2017. URL https://towardsdatascience.com/
activation-functions-neural-networks-1cbd9f8d91d6.

[35] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR, abs/1312.6034,
2013. URL http://arxiv.org/abs/1312.6034.

[36] A. Simpson. Self-driving car steering angle prediction based on image recognition.
2017.

56

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture7.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture7.pdf
https://karolmajek.pl/self-racing-cars-2017-udacity-team-soulless/
https://karolmajek.pl/self-racing-cars-2017-udacity-team-soulless/
http://www.stat.cmu.edu/~ryantibs/convexopt-F13/lectures/11-QuasiNewton.pdf
http://www.stat.cmu.edu/~ryantibs/convexopt-F13/lectures/11-QuasiNewton.pdf
https://blogs.nvidia.com/blog/2016/04/05/roborace/
https://blogs.nvidia.com/blog/2016/04/05/roborace/
https://blogs.nvidia.com/blog/2016/06/03/autonomous-vehicles/
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
http://arxiv.org/abs/1312.6034

[37] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striving
for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014. URL
http://arxiv.org/abs/1412.6806.

[38] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.

[39] A. S. Walia. Activation functions and it’s types-which is
better?, May 2017. URL https://towardsdatascience.com/
activation-functions-and-its-types-which-is-better-a9a5310cc8f.

[40] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text recognition with
convolutional neural networks. In Proceedings of the 21st International Conference
on Pattern Recognition (ICPR2012), pages 3304–3308, Nov 2012.

[41] P. Werbos and P. J. (Paul John. Beyond regression : new tools for prediction and
analysis in the behavioral sciences /. 01 1974.

[42] Y.-x. Yuan. Step-sizes for the gradient method. 1999.

[43] J. Zhang and S. Singh. Loam: Lidar odometry and mapping in real-time. In
Robotics: Science and Systems Conference, July 2014.

[44] J. Zhong. Pid controller tuning: A short tutorial. 2006.

57

http://arxiv.org/abs/1412.6806
https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f
https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f

A. Code Snippets

A.1. End-to-End Model Implementation using Keras
1 def build_end_to_end_model ():
2 img_in = Input (shape =(100 , 200 , 3)) , name=" img_in ")
3 x = img_in
4 x = BatchNormalization (axis =3)(x)
5 x = Convolution2D (filters =24 , kernel_size =(5 , 5) ,
6 strides =(2 , 2) , activation ="relu")(x)
7 x = Convolution2D (filters =36 , kernel_size =(5 , 5) ,
8 strides =(2 , 2) , activation ="relu")(x)
9 x = Convolution2D (filters =48 , kernel_size =(5 , 5) ,

10 strides =(2 , 2) , activation ="relu")(x)
11 x = Convolution2D (filters =64 , kernel_size =(3 , 3) ,
12 strides =(1 , 1) , activation ="relu")(x)
13 x = Convolution2D (filters =64 , kernel_size =(3 , 3) ,
14 strides =(1 , 1) , activation ="relu")(x)
15 x = Flatten ()(x)
16 x = Dense (units =100 , activation ="relu")(x)
17 x = Dense (units =50 , activation ="relu")(x)
18 x = Dense (units =10 , activation ="relu")(x)
19
20 angle_out = Dense (units =1 , name=" angle_out ",
21 activation =" linear ")(x)
22 throttle_out = Dense (units =1 , name=" throttle_out ",
23 activation =" linear ")(x)
24
25 model = Model (inputs =[img_in], outputs =[angle_out , throttle_out])
26 model . compile (optimizer ="adam",
27 loss ={" angle_out ": " mean_squared_error ",
28 " throttle_out ": " mean_squared_error "})
29 return model

58

A.2. Trajectory Prediction Model Implementation using Keras
1 def build_trajectory_prediction_model (args):
2 img_in = Input (shape =(100 , 200 , 3)) , name=" img_in ")
3 x = img_in
4 x = BatchNormalization (axis =3)(x)
5 x = Convolution2D (filters =24 , kernel_size =(5 , 5) ,
6 strides =(2 , 2) , activation ="relu")(x)
7 x = Convolution2D (filters =36 , kernel_size =(5 , 5) ,
8 strides =(2 , 2) , activation ="relu")(x)
9 x = Convolution2D (filters =48 , kernel_size =(5 , 5) ,

10 strides =(2 , 2) , activation ="relu")(x)
11 x = Convolution2D (filters =64 , kernel_size =(3 , 3) ,
12 strides =(1 , 1) , activation ="relu")(x)
13 x = Convolution2D (filters =64 , kernel_size =(3 , 3) ,
14 strides =(1 , 1) , activation ="relu")(x)
15 x = Flatten ()(x)
16 x = Dense (units =100 , activation ="relu")(x)
17 x = Dense (units =50 , activation ="relu")(x)
18 x = Dense (units =10 , activation ="relu")(x)
19
20 loss = {}
21 outputs = []
22 for i in range (3):
23 name_x = " coord_x_out_ " + str(i)
24 name_y = " coord_y_out_ " + str(i)
25 coord_x_out = Dense (1 , name=name_x , activation =" linear ")(x)
26 coord_y_out = Dense (1 , name=name_y , activation =" linear ")(x)
27 loss[name_x] = " mean_squared_error "
28 loss[name_y] = " mean_squared_error "
29 outputs . append (coord_x_out)
30 outputs . append (coord_y_out)
31
32 model = Model (inputs =[img_in], outputs = outputs)
33 model . compile (optimizer ="adam" , loss=loss)
34 return model

59

B. Trajectory Prediction Approach Parameters

parameter value
cl 3.1697932657906436
cr 3.189793265790643
T 305
D (0.6, 1.2, 1.8)
b 0.32
ν1 2.5
ν2 1.5
χ 0.3
Kp 5 · 10−3

Ki 0
Kd 1 · 10−3

60

C. Source Code

C.1. Odroid

C.1.1. C++ Source Code

AsyncCapture.h
1 //
2 // Created by philipp on 17.08.18.
3 //
4
5 # ifndef CAR_ASYNCCAPTURE_H
6 # define CAR_ASYNCCAPTURE_H
7
8 # include < opencv2 / opencv .hpp >
9 # include < opencv2 /core/mat.hpp >

10
11 # include <gst/gst.h>
12 # include <gst/app/ gstappsink .h>
13
14 namespace car
15 {
16
17 class AsyncCapture
18 {
19 public :
20 using OnFrameCapturedCallback = std :: function < void (cv :: Mat & frame) >;
21
22 explicit AsyncCapture (int frameWidth = 744 , int frameHeight = 480 , int frameRate

↪→ = 60) ;
23
24 ~ AsyncCapture ();
25
26 AsyncCapture (const AsyncCapture &) = delete ;
27
28 AsyncCapture (AsyncCapture && other) noexcept ;
29
30 AsyncCapture & operator =(const AsyncCapture &) = delete ;
31
32 AsyncCapture & operator =(AsyncCapture && other) noexcept ;
33
34 void start (const OnFrameCapturedCallback & callback);
35
36 void stop ();
37
38 private :
39 int frameWidth , frameHeight , frameRate ;
40
41 OnFrameCapturedCallback onFrameCapturedCallback ;
42
43 GstElement * pipeline = nullptr ;
44 GstElement * source = nullptr ;
45 GstElement * inputCaps = nullptr ;
46 GstElement * queue = nullptr ;
47 GstElement * bayer2rgb = nullptr ;
48 GstElement * convert = nullptr ;
49 GstElement * appsink = nullptr ;
50
51 static GstFlowReturn appsinkFrameCallback (GstAppSink * appsink , gpointer data);
52
53 void createPipeline ();
54

61

55 void ensureReadyState ();
56 };
57
58 }
59
60 # endif // CAR_ASYNCCAPTURE_H

AsyncCapture.cpp
1 //
2 // Created by philipp on 17.08.18.
3 //
4
5 # include " camera / AsyncCapture .h"
6
7 namespace car
8 {
9

10 AsyncCapture :: AsyncCapture (int frameWidth , int frameHeight , int frameRate)
11 : frameWidth (frameWidth) , frameHeight (frameHeight) , frameRate (frameRate)
12 {
13 if (! gst_is_initialized ())
14 gst_init (nullptr , nullptr);
15
16 createPipeline ();
17 ensureReadyState ();
18 }
19
20 AsyncCapture ::~ AsyncCapture ()
21 {
22 stop ();
23 gst_object_unref (pipeline);
24 }
25
26 AsyncCapture :: AsyncCapture (AsyncCapture && other) noexcept
27 : pipeline (other . pipeline)
28 {
29 other . pipeline = nullptr ;
30 }
31
32 AsyncCapture & AsyncCapture :: operator =(AsyncCapture && other) noexcept
33 {
34 gst_object_unref (pipeline);
35 pipeline = other . pipeline ;
36 other . pipeline = nullptr ;
37 return * this ;
38 }
39
40 void AsyncCapture :: start (const AsyncCapture :: OnFrameCapturedCallback & callback)
41 {
42 onFrameCapturedCallback = callback ;
43 GstAppSinkCallbacks callbacks = { nullptr , nullptr , appsinkFrameCallback };
44 gst_app_sink_set_callbacks (GST_APP_SINK (appsink) , & callbacks , this , nullptr);
45
46 gst_element_set_state (pipeline , GST_STATE_PLAYING);
47 gst_element_get_state (pipeline , nullptr , nullptr , GST_CLOCK_TIME_NONE);
48 }
49
50 void AsyncCapture :: stop ()
51 {
52 gst_element_set_state (pipeline , GST_STATE_NULL);
53 gst_element_get_state (pipeline , nullptr , nullptr , GST_CLOCK_TIME_NONE);
54 }
55
56 GstFlowReturn AsyncCapture :: appsinkFrameCallback (GstAppSink * appsink , gpointer data)

62

57 {
58 auto this_ = static_cast < AsyncCapture * >(data);
59 auto sample = gst_app_sink_pull_sample (appsink);
60 bool success { false };
61 if (sample)
62 {
63 auto buffer = gst_sample_get_buffer (sample);
64 auto caps = gst_sample_get_caps (sample);
65 auto structure = gst_caps_get_structure (caps , 0);
66 int width , height ;
67 gst_structure_get_int (structure , " width " , & width);
68 gst_structure_get_int (structure , " height " , & height);
69 GstMapInfo info;
70 if (gst_buffer_map (buffer , & info , GST_MAP_READ))
71 {
72 const auto frameData = info.data;
73 // ’ data ’ now contains a pointer to readable image data
74 cv :: Mat frame {height , width , CV_8UC3 , frameData };
75 this_ -> onFrameCapturedCallback (frame);
76 // unmap after use
77 gst_buffer_unmap (buffer , & info);
78 success = true ;
79 }
80 }
81 gst_sample_unref (sample);
82 if (! success)
83 {
84 cv :: Mat emptyFrame {};
85 this_ -> onFrameCapturedCallback (emptyFrame);
86 }
87 return GST_FLOW_OK ;
88 }
89
90 void AsyncCapture :: createPipeline ()
91 {
92 pipeline = gst_pipeline_new (" pipeline ");
93
94 source = gst_element_factory_make (" tcambin " , nullptr);
95 if (! source)
96 throw std :: runtime_error ("’tcambin ’ could not be initialized ! Check tiscamera

↪→ installation ");
97
98 inputCaps = gst_element_factory_make (" capsfilter " , nullptr);
99 std :: ostringstream oss;

100 oss << " video /x-bayer , width =" << frameWidth
101 << " , height =" << frameHeight
102 << " , framerate =" << frameRate << "/1";
103 g_object_set (inputCaps , "caps" , gst_caps_from_string (oss.str (). c_str ()) , nullptr);
104
105 queue = gst_element_factory_make (" queue " , nullptr);
106 g_object_set (queue , " leaky " , true , "max -size - buffers " , 2, nullptr);
107
108 bayer2rgb = gst_element_factory_make (" bayer2rgb " , nullptr);
109
110 convert = gst_element_factory_make (" videoconvert " , nullptr);
111
112 appsink = gst_element_factory_make (" appsink " , nullptr);
113 g_object_set (appsink , "caps" , gst_caps_from_string (" video /x-raw , format =BGR") ,

↪→ nullptr);
114
115 assert (pipeline && source && inputCaps && queue && bayer2rgb && convert && appsink)

↪→ ;
116
117 gst_bin_add_many (
118 GST_BIN (pipeline),
119 source , inputCaps , queue , bayer2rgb , convert , appsink , nullptr);

63

120 auto result = gst_element_link_many (
121 source , inputCaps , queue , bayer2rgb , convert , appsink , nullptr);
122 assert (result);
123 }
124
125 void AsyncCapture :: ensureReadyState ()
126 {
127 GstState state ;
128 if ((gst_element_get_state (source , & state , nullptr , GST_CLOCK_TIME_NONE) ==

↪→ GST_STATE_CHANGE_SUCCESS) &&
129 state == GST_STATE_NULL)
130 {
131 gst_element_set_state (source , GST_STATE_READY);
132 gst_element_get_state (source , nullptr , nullptr , GST_CLOCK_TIME_NONE);
133 }
134 }
135
136 }

Config.h
1 //
2 // Created by philipp on 09.07.18.
3 //
4
5 # ifndef CAR_CONFIG_H
6 # define CAR_CONFIG_H
7
8 # include "Json.h"
9

10 namespace car
11 {
12 namespace config
13 {
14
15 std :: string directory ();
16
17 nlohmann :: json open ();
18
19 }
20 }
21
22 # endif // CAR_CONFIG_H

Config.cpp
1 //
2 // Created by philipp on 09.07.18.
3 //
4
5 # include " utils / Config .h"
6 # include <fstream >
7
8 namespace car
9 {

10 namespace config
11 {
12
13 std :: string directory ()
14 {
15 auto userHome = std :: string {std :: getenv ("HOME")};
16 return userHome + "/. car";
17 }

64

18
19 nlohmann :: json open ()
20 {
21 auto configPath = directory () + "/ config .json";
22 std :: ifstream file{ configPath };
23 nlohmann :: json j;
24 file >> j;
25 return j;
26 }
27
28 }
29 }

Recorder.h
1 //
2 // Created by philipp on 20.06.18.
3 //
4
5 # ifndef CAR_RECORDER_H
6 # define CAR_RECORDER_H
7
8 # include < nodelet / nodelet .h>
9 # include <ros/ros.h>

10 # include < logging / MessageOStream .h>
11 # include <atomic >
12 # include < opencv2 / opencv .hpp >
13 # include < opencv2 /core/mat.hpp >
14 # include < NetworkingLib /Time.h>
15 # include < camera / AsyncCapture .h>
16 # include <mutex >
17
18 # include "car/ WheelTicks .h"
19 # include "car/ Odometry .h"
20 # include "car/ SetThrottle .h"
21 # include "car/ SetAngle .h"
22 # include "car/ UssDistance .h"
23 # include "car/ StopRecording .h"
24 # include "car/ RemoteState .h"
25
26 namespace car
27 {
28
29 class Recorder : public nodelet :: Nodelet
30 {
31 public :
32 void onInit () override ;
33
34 Recorder ();
35
36 private :
37 ros :: NodeHandle nh;
38
39 ros :: Subscriber wheelTicksSubscriber ;
40 ros :: Subscriber odometrySubscriber ;
41 ros :: Subscriber setThrottleSubscriber ;
42 ros :: Subscriber setAngleSubscriber ;
43 ros :: Subscriber ussDistanceSubscriber ;
44 ros :: Subscriber stopRecordingSubscriber ;
45 ros :: Subscriber remoteStateSubscriber ;
46
47 MessageOStream messageOStream ;
48
49 float ticksRL {0};
50 float ticksRR {0};

65

51 std :: mutex ticksMutex ;
52
53 std :: atomic <float > x{0};
54 std :: atomic <float > y{0};
55
56 std :: atomic <float > setThrottle {0.0f};
57 std :: atomic <float > setAngle {0.0f};
58 std :: atomic <float > distance {0.0f};
59
60 std :: atomic <bool > recording { true };
61 std :: atomic <bool > recordingSequence { true };
62
63 AsyncCapture capture ;
64 cv :: Mat currFrame ;
65 std :: mutex frameCopyMutex ;
66 std :: atomic <bool > receivedFrame { false };
67
68 std :: string recordingsDirectory ;
69 networking :: time :: Duration frameTime ;
70
71 void wheelTicksCallback (const WheelTicks :: ConstPtr msg);
72
73 void odometryCallback (const Odometry :: ConstPtr msg);
74
75 void setThrottleCallback (const SetThrottle :: ConstPtr msg);
76
77 void setAngleCallback (const SetAngle :: ConstPtr msg);
78
79 void ussDistanceCallback (const UssDistance :: ConstPtr msg);
80
81 void stopRecordingCallback (const StopRecording :: ConstPtr msg);
82
83 void remoteStateCallback (const RemoteState :: ConstPtr msg);
84
85 void record ();
86
87 std :: string createRecordingDirectory ();
88
89 void writeCsvRecord (std :: ofstream & dataFile , const std :: string & imgFilename);
90
91 void readConfig ();
92 };
93
94 }
95
96 # endif // CAR_RECORDER_H

Recorder.cpp
1 //
2 // Created by philipp on 20.06.18.
3 //
4
5 # include < pluginlib / class_list_macros .h>
6 # include <thread >
7 # include " recorder / Recorder .h"
8 # include < boost / filesystem .hpp >
9 # include < utils / Config .h>

10
11 PLUGINLIB_EXPORT_CLASS (car :: Recorder , nodelet :: Nodelet);
12
13 namespace car
14 {
15
16 Recorder :: Recorder ()

66

17 : messageOStream (nh , " recorder ")
18 , capture (744 , 480 , 60)
19 {}
20
21 void Recorder :: onInit ()
22 {
23 messageOStream . write (" onInit " , " START ");
24
25 wheelTicksSubscriber = nh. subscribe (" WheelTicks " , 1000 , & Recorder ::

↪→ wheelTicksCallback , this);
26 odometrySubscriber = nh. subscribe (" Odometry " , 1 , & Recorder :: odometryCallback , this)

↪→ ;
27 setThrottleSubscriber = nh. subscribe (" SetThrottle " , 1 , & Recorder ::

↪→ setThrottleCallback , this);
28 setAngleSubscriber = nh. subscribe (" SetAngle " , 1 , & Recorder :: setAngleCallback , this)

↪→ ;
29 ussDistanceSubscriber = nh. subscribe (" UssDistance " , 1 , & Recorder ::

↪→ ussDistanceCallback , this);
30 stopRecordingSubscriber = nh. subscribe (" StopRecording " , 1 , & Recorder ::

↪→ stopRecordingCallback , this);
31 remoteStateSubscriber = nh. subscribe (" RemoteState " , 1 , & Recorder ::

↪→ remoteStateCallback , this);
32
33 readConfig ();
34
35 capture . start (
36 [&](auto & frame)
37 {
38 std :: lock_guard <std :: mutex > lock{ frameCopyMutex };
39 currFrame = frame . clone ();
40 receivedFrame = true ;
41 });
42
43 std :: thread recorderThread {[&] { this -> record () ; }};
44 recorderThread . detach ();
45
46 messageOStream . write (" onInit " , "END");
47 }
48
49 void Recorder :: wheelTicksCallback (const WheelTicks :: ConstPtr msg)
50 {
51 std :: lock_guard <std :: mutex > lock{ ticksMutex };
52 ticksRL += msg -> rearLeftTicks ;
53 ticksRR += msg -> rearRightTicks ;
54 }
55
56 void Recorder :: odometryCallback (const Odometry :: ConstPtr msg)
57 {
58 x = msg -> xDistance ;
59 y = msg -> yDistance ;
60 }
61
62 void Recorder :: setThrottleCallback (const SetThrottle :: ConstPtr msg)
63 {
64 setThrottle = msg -> throttle ;
65 }
66
67 void Recorder :: setAngleCallback (const SetAngle :: ConstPtr msg)
68 {
69 setAngle = msg -> angle ;
70 }
71
72 void Recorder :: ussDistanceCallback (const UssDistance :: ConstPtr msg)
73 {
74 distance = msg -> distance ;
75 }

67

76
77 void Recorder :: stopRecordingCallback (const StopRecording :: ConstPtr msg)
78 {
79 recording = false ;
80 }
81
82 void Recorder :: remoteStateCallback (const RemoteState :: ConstPtr msg)
83 {
84 if (msg ->id == 0)
85 recordingSequence = msg -> value != 0 ? true : false ;
86 }
87
88 void Recorder :: record ()
89 {
90 auto dataDirName = createRecordingDirectory ();
91
92 std :: ostringstream oss;
93 oss << dataDirName << "/data.csv";
94 std :: ofstream dataFile {oss.str () };
95
96 dataFile << "ticksRL ,ticksRR ,x,y, setThrottle ,setAngle ,distance ,recording ,img\n";
97
98 auto last = networking :: time :: now ();
99

100 for (std :: size_t counter = 0; recording ; counter ++)
101 {
102 // keep constant frame rate
103 auto now = networking :: time :: now ();
104 auto lastFrameTime = now - last;
105 if (lastFrameTime < frameTime)
106 std :: this_thread :: sleep_for (frameTime - lastFrameTime);
107 last = networking :: time :: now ();
108
109 while (! receivedFrame);
110 cv :: Mat frame {};
111 {
112 std :: lock_guard <std :: mutex > lock{ frameCopyMutex };
113 frame = currFrame ;
114 }
115 if (frame . empty ())
116 continue ;
117
118 // save image
119 oss = std :: ostringstream {};
120 oss << "img -" << counter << ".jpg";
121 auto imgFilename = oss.str ();
122 oss = std :: ostringstream {};
123 oss << dataDirName << "/" << imgFilename ;
124 auto imgPath = oss.str ();
125 cv :: imwrite (imgPath , frame);
126
127 writeCsvRecord (dataFile , imgFilename);
128 }
129
130 messageOStream . write ("MSG" , " stopped recording ");
131 }
132
133 std :: string Recorder :: createRecordingDirectory ()
134 {
135 std :: ostringstream oss;
136 auto time = std :: time(nullptr);
137 oss << recordingsDirectory << "/data -" << std :: put_time (std :: localtime (& time) , "%Y

↪→ -%m -%d -%H -%M -%S");
138 auto dirName = oss.str ();
139 boost :: filesystem :: path dir{ dirName };
140 boost :: filesystem :: create_directory (dir);

68

141 return dirName ;
142 }
143
144 void Recorder :: writeCsvRecord (std :: ofstream & dataFile , const std :: string &

↪→ imgFilename)
145 {
146 float ticksRLCopy {0} , ticksRRCopy {0};
147 {
148 std :: lock_guard <std :: mutex > lock{ ticksMutex };
149 ticksRLCopy = ticksRL ;
150 ticksRRCopy = ticksRR ;
151 ticksRL = 0;
152 ticksRR = 0;
153 }
154
155 dataFile << ticksRLCopy << ","
156 << ticksRRCopy << ","
157 << x.load () << ","
158 << y.load () << ","
159 << setThrottle .load () << ","
160 << setAngle .load () << ","
161 << distance .load () << ","
162 << recordingSequence .load () << ","
163 << imgFilename << "\n";
164 }
165
166 void Recorder :: readConfig ()
167 {
168 auto j = config :: open ();
169
170 if (j. count (" recordingsDirectory ") > 0)
171 recordingsDirectory = j.at(" recordingsDirectory ").get <std :: string >();
172 else
173 recordingsDirectory = config :: directory () + "/ recordings ";
174
175 int fps = 60;
176 if (j. count (" recordingFPS ") > 0)
177 fps = j.at(" recordingFPS ").get <int >();
178 frameTime = std :: chrono :: nanoseconds (1000000000 / fps);
179 }
180
181 }

RemoteControl.h
1 //
2 // Created by philipp on 20.06.18.
3 //
4
5 # ifndef CAR_REMOTECONTROL_H
6 # define CAR_REMOTECONTROL_H
7
8 # include < nodelet / nodelet .h>
9 # include <ros/ros.h>

10 # include < logging / MessageOStream .h>
11
12 # include "car/ RemoteAngle .h"
13 # include "car/ RemoteThrottle .h"
14
15 namespace car
16 {
17
18 class RemoteControl : public nodelet :: Nodelet
19 {
20 public :

69

21 void onInit () override ;
22
23 RemoteControl ();
24
25 private :
26 ros :: NodeHandle nh;
27
28 ros :: Subscriber remoteThrottleSubscriber ;
29 ros :: Subscriber remoteAngleSubscriber ;
30
31 ros :: Publisher setThrottlePublisher ;
32 ros :: Publisher setAnglePublisher ;
33
34 MessageOStream messageOStream ;
35
36 bool controlThrottle { false };
37 bool controlSteeringAngle { false };
38
39 void remoteThrottleCallback (const RemoteThrottle :: ConstPtr & msg);
40
41 void remoteAngleCallback (const RemoteAngle :: ConstPtr & msg);
42
43 void readConfig ();
44 };
45
46 }
47
48 # endif // CAR_REMOTECONTROL_H

RemoteControl.cpp
1 //
2 // Created by philipp on 20.06.18.
3 //
4
5 # include < pluginlib / class_list_macros .h>
6 # include < utils / Config .h>
7 # include " remoteControl / RemoteControl .h"
8 # include "car/ SetThrottle .h"
9 # include "car/ SetAngle .h"

10
11 PLUGINLIB_EXPORT_CLASS (car :: RemoteControl , nodelet :: Nodelet);
12
13 namespace car
14 {
15
16 RemoteControl :: RemoteControl ()
17 : messageOStream (nh , " remoteControl ")
18 {}
19
20 void RemoteControl :: onInit ()
21 {
22 messageOStream . write (" onInit " , " START ");
23
24 readConfig ();
25
26 if (controlThrottle)
27 {
28 remoteThrottleSubscriber = nh. subscribe (" RemoteThrottle " , 1 , & RemoteControl ::

↪→ remoteThrottleCallback , this);
29 setThrottlePublisher = nh.advertise < SetThrottle >(" SetThrottle " , 1);
30 }
31
32 if (controlSteeringAngle)
33 {

70

34 remoteAngleSubscriber = nh. subscribe (" RemoteAngle " , 1 , & RemoteControl ::
↪→ remoteAngleCallback , this);

35 setAnglePublisher = nh.advertise <SetAngle >(" SetAngle " , 1);
36 }
37
38 messageOStream . write (" onInit " , "END");
39 }
40
41 void RemoteControl :: remoteThrottleCallback (const RemoteThrottle :: ConstPtr & msg)
42 {
43 SetThrottle throttleMsg ;
44 throttleMsg . throttle = msg -> throttle ;
45 setThrottlePublisher . publish (throttleMsg);
46 }
47
48 void RemoteControl :: remoteAngleCallback (const RemoteAngle :: ConstPtr & msg)
49 {
50 SetAngle angleMsg ;
51 angleMsg . angle = msg -> angle ;
52 setAnglePublisher . publish (angleMsg);
53 }
54
55 void RemoteControl :: readConfig ()
56 {
57 auto j = config :: open ();
58 if (j. count (" enableThrottleRemoteControl ") > 0)
59 controlThrottle = j.at(" enableThrottleRemoteControl ").get <bool >();
60 if (j. count (" enableSteeringAngleRemoteControl ") > 0)
61 controlSteeringAngle = j.at(" enableSteeringAngleRemoteControl ").get <bool >();
62 }
63
64 }

RemoteControlMessage.h
1 //
2 // Created by philipp on 21.06.18.
3 //
4
5 # ifndef CAR_REMOTECONTROLMESSAGE_H
6 # define CAR_REMOTECONTROLMESSAGE_H
7
8 # include " NetworkingLib / Message .h"
9 # include < boost / algorithm / string .hpp >

10 # include <utility >
11
12 namespace car
13 {
14
15 struct RemoteControlMessage
16 {
17 RemoteControlMessage () = default ;
18
19 RemoteControlMessage (std :: string key , std :: string value)
20 : key(std :: move(key)) , value (std :: move(value))
21 {}
22
23 std :: string key;
24 std :: string value ;
25 };
26
27 }
28
29 namespace networking
30 {

71

31 namespace message
32 {
33
34 template <>
35 struct Decoder <car :: RemoteControlMessage >
36 {
37 void operator ()(car :: RemoteControlMessage & message , const std :: string & data)

↪→ const
38 {
39 std :: vector <std :: string > split ;
40 boost :: split (split , data , [](char c) { return c == ’=’;});
41 message .key = split .at (0);
42 message . value = split .at (1);
43 };
44 };
45
46 }
47 }
48
49 # endif // CAR_REMOTECONTROLMESSAGE_H

RemoteControlMessageReceiver.h
1 //
2 // Created by philipp on 23.08.18.
3 //
4
5 # ifndef CAR_REMOTECONTROLMESSAGERECEIVER_H
6 # define CAR_REMOTECONTROLMESSAGERECEIVER_H
7
8 # include < nodelet / nodelet .h>
9 # include <ros/ros.h>

10 # include < logging / MessageOStream .h>
11
12 # include " NetworkingLib / DatagramReceiver .h"
13
14 # include " RemoteControlMessage .h"
15
16 namespace car
17 {
18
19 class RemoteControlMessageReceiver : public nodelet :: Nodelet
20 {
21 public :
22 void onInit () override ;
23
24 RemoteControlMessageReceiver ();
25
26 private :
27 ros :: NodeHandle nh;
28
29 ros :: Publisher remoteThrottlePublisher ;
30 ros :: Publisher remoteAnglePublisher ;
31 ros :: Publisher remoteStatePublisher ;
32
33 MessageOStream messageOStream ;
34
35 networking :: Networking net;
36
37 networking :: message :: DatagramReceiver < RemoteControlMessage >:: Ptr messageReceiver ;
38
39 void receiveMessages ();
40
41 void handleMessage (const RemoteControlMessage & message);
42 };

72

43
44 }
45
46 # endif // CAR_REMOTECONTROLMESSAGERECEIVER_H

RemoteControlMessageReceiver.cpp
1 //
2 // Created by philipp on 23.08.18.
3 //
4
5 # include < pluginlib / class_list_macros .h>
6 # include " remoteControl / RemoteControlMessageReceiver .h"
7 # include < boost / algorithm / string .hpp >
8
9 # include "car/ RemoteThrottle .h"

10 # include "car/ RemoteAngle .h"
11 # include "car/ RemoteState .h"
12
13 PLUGINLIB_EXPORT_CLASS (car :: RemoteControlMessageReceiver , nodelet :: Nodelet);
14
15 namespace car
16 {
17
18 RemoteControlMessageReceiver :: RemoteControlMessageReceiver ()
19 : messageOStream (nh , " remoteControlMessageReceiver ")
20 {}
21
22 void RemoteControlMessageReceiver :: onInit ()
23 {
24 messageOStream . write (" onInit " , " START ");
25
26 remoteThrottlePublisher = nh.advertise < RemoteThrottle >(" RemoteThrottle " , 1);
27 remoteAnglePublisher = nh.advertise < RemoteAngle >(" RemoteAngle " , 1);
28 remoteStatePublisher = nh.advertise < RemoteState >(" RemoteState " , 1);
29
30 messageReceiver = networking :: message :: DatagramReceiver < RemoteControlMessage >::

↪→ create (net , 10288) ;
31 receiveMessages ();
32
33 messageOStream . write (" onInit " , " START ");
34 }
35
36 void RemoteControlMessageReceiver :: receiveMessages ()
37 {
38 messageReceiver -> asyncReceive (
39 networking :: time :: Duration :: max () ,
40 [&](const auto & error , const auto & message , const auto & host , auto port)
41 {
42 if (error)
43 return ;
44 this -> handleMessage (message);
45 this -> receiveMessages ();
46 });
47 }
48
49 void RemoteControlMessageReceiver :: handleMessage (const RemoteControlMessage & message

↪→)
50 {
51 if (message .key == " angle ")
52 {
53 RemoteAngle angleMsg ;
54 angleMsg . angle = std :: stof(message . value);
55 remoteAnglePublisher . publish (angleMsg);
56 }

73

57 else if (message .key == " speed ")
58 {
59 RemoteThrottle throttleMsg ;
60 throttleMsg . throttle = std :: stof(message . value);
61 remoteThrottlePublisher . publish (throttleMsg);
62 }
63 else if (message .key == " state ")
64 {
65 RemoteState remoteState ;
66 std :: vector <std :: string > split ;
67 boost :: split (split , message .value , [](char c) { return c == ’,’; });
68 remoteState .id = std :: stoi(split [0]);
69 remoteState . value = std :: stoi(split [1]);
70 remoteStatePublisher . publish (remoteState);
71 }
72 }
73
74 }

Stm.h
1 # ifndef ENVIRONMENT_H
2 # define ENVIRONMENT_H
3
4 # include < nodelet / nodelet .h>
5 # include <ros/ros.h>
6 # include < logging / MessageOStream .h>
7
8 # include " NetworkingLib / Networking .h"
9 # include " VeloxProtocolLib / Connection .h"

10
11 # include "car/ SetAngle .h"
12 # include "car/ SetThrottle .h"
13
14 namespace car
15 {
16
17 class Stm : public nodelet :: Nodelet
18 {
19 public :
20 void onInit () override ;
21
22 Stm ();
23
24 private :
25 ros :: NodeHandle nh;
26
27 ros :: Publisher odometryPublisher ;
28 ros :: Publisher wheelTicksPublisher ;
29
30 ros :: Subscriber setThrottleSubscriber ;
31 ros :: Subscriber setAngleSubscriber ;
32
33 MessageOStream messageOStream ;
34
35 networking :: Networking net;
36 veloxProtocol :: Connection :: Ptr veloxConnection ;
37
38 float throttleGain {0.0};
39
40 void readConfig ();
41
42 void onStmDataReceived ();
43
44 void setThrottleCallback (const SetThrottle :: ConstPtr & msg);

74

45
46 void setAngleCallback (const SetAngle :: ConstPtr & msg);
47 };
48
49 }
50 # endif

Stm.cpp
1 # include < pluginlib / class_list_macros .h>
2 # include <ros/ros.h>
3 # include < utils / Config .h>
4
5 # include "stm/Stm.h"
6 # include "car/ Odometry .h"
7 # include "car/ WheelTicks .h"
8
9 PLUGINLIB_EXPORT_CLASS (car ::Stm , nodelet :: Nodelet);

10
11 namespace car
12 {
13
14 Stm :: Stm ()
15 : messageOStream (nh , "Stm")
16 {}
17
18 void Stm :: onInit ()
19 {
20 using namespace std :: chrono_literals ;
21
22 messageOStream . write (" onInit " , " START ");
23
24 readConfig ();
25
26 odometryPublisher = nh.advertise <Odometry >(" Odometry " , 1);
27 wheelTicksPublisher = nh.advertise < WheelTicks >(" WheelTicks " , 1000);
28
29 setThrottleSubscriber = nh. subscribe (" SetThrottle " , 1 , & Stm :: setThrottleCallback

↪→ , this);
30 setAngleSubscriber = nh. subscribe (" SetAngle " , 1 , & Stm :: setAngleCallback , this);
31
32 veloxConnection = veloxProtocol :: Connection :: create (net);
33 veloxConnection ->open(
34 "/dev/ ttySAC0 ",
35 [this]
36 { onStmDataReceived () ; } ,
37 [this]
38 { messageOStream . write (" ERROR " , "UART was closed "); });
39
40 messageOStream . write (" onInit " , "END");
41 }
42
43 void Stm :: onStmDataReceived ()
44 {
45 auto stmOdometry = veloxConnection -> getOdometry ().get ();
46 Odometry odometryMsg ;
47 odometryMsg . speed = stmOdometry . speed ;
48 odometryMsg . xDistance = stmOdometry . xDistance ;
49 odometryMsg . yDistance = stmOdometry . yDistance ;
50 odometryMsg . yawAngle = stmOdometry . yawAngle ;
51 odometryMsg . steeringAngle = stmOdometry . steeringAngle ;
52 odometryPublisher . publish (odometryMsg);
53
54 WheelTicks wheelTicksMsg ;
55 wheelTicksMsg . rearLeftTicks = (uint32_t) stmOdometry . yawAngle ;

75

56 wheelTicksMsg . rearRightTicks = (uint32_t) stmOdometry . steeringAngle ;
57 // we treat the ’ steeringAngleTimestamp ’ value as the delta time in us between the

↪→ last ticks update
58 wheelTicksMsg . deltaTime = (double) stmOdometry . steeringAngleTimestamp * 1e -6;
59 wheelTicksPublisher . publish (wheelTicksMsg);
60 }
61
62 void Stm :: setThrottleCallback (const SetThrottle :: ConstPtr & msg)
63 {
64 // float throttle = std :: max(std :: min (msg -> throttle * throttleGain , 1.0 f) , -1.0f);
65 float throttle = msg -> throttle * throttleGain ;
66 veloxConnection -> setSpeed (throttle);
67 }
68
69 void Stm :: setAngleCallback (const SetAngle :: ConstPtr & msg)
70 {
71 veloxConnection -> setSteeringAngle (msg -> angle);
72 }
73
74 void Stm :: readConfig ()
75 {
76 auto j = config :: open ();
77 throttleGain = j.at(" throttleGain ");
78 }
79
80 }

C.1.2. Python Source Code

autonom_drive.py
1 #!/ usr / bin / env python
2 import rospy
3 from utils import *
4 from keras . models import load_model
5 from keras import backend as K
6 from car.msg import RemoteThrottle , WheelTicks , SetAngle , SetThrottle
7 from threading import Thread , Lock
8 import cv2
9 import numpy as np

10 import signal
11 import datetime
12 from image_stream import ImageStream
13 import motion
14 import odometry
15 from parameters import *
16
17
18 class AutonomDrive :
19 def __init__ (self):
20 self. running = True
21 self. contrast = 1.0
22 self. remote_throttle = 0.0
23 self. speed = 0.0
24 self. curr_angle_estimator = motion . CurrentAngleEstimator (ANGLE_CHANGE_RATE ,

↪→ confidence_duration = ANGLE_ESTIMATOR_CONFIDENCE_DURATION)
25 self. remote_throttle_sub = rospy . Subscriber (" RemoteThrottle " , RemoteThrottle

↪→ , self. remote_throttle_callback , queue_size =1)
26 self. wheel_ticks_sub = rospy . Subscriber (" WheelTicks " , WheelTicks , self.

↪→ wheel_ticks_callback , queue_size =1)
27 self. set_angle_pub = rospy . Publisher (" SetAngle " , SetAngle , queue_size =1)
28 self. set_throttle_pub = rospy . Publisher (" SetThrottle " , SetThrottle ,

↪→ queue_size =1)

76

29 self. model_path = None
30 self. read_config ()
31 self. image_stream = ImageStream (self. contrast)
32 self. model = load_model (self. model_path)
33 rospy . init_node (" autonom_drive " , log_level = rospy .INFO)
34 signal . signal (signal .SIGINT , self. signal_handler)
35
36 def read_config (self):
37 config = open_config ()
38
39 if " model " not in config :
40 raise AttributeError (" attribute ’ model ’ is missing in config .json")
41 model_filename = str(config [" model "])
42 models_dir = config [" modelsDirectory "] if " modelsDirectory " in config else os

↪→ .path.join(get_config_dir () , " models ")
43 self. model_path = os.path.join(models_dir , model_filename)
44
45 if " numTensorflowThreads " in config :
46 num_threads = int(config [" numTensorflowThreads "])
47 K. set_session (K.tf. Session (config =K.tf. ConfigProto (

↪→ intra_op_parallelism_threads = num_threads ,
↪→ inter_op_parallelism_threads = num_threads)))

48
49 if " contrast " in config :
50 self. contrast = float (config [" contrast "])
51
52 def signal_handler (self , sig , frame):
53 self. running = False
54 self. image_stream .stop ()
55
56 def remote_throttle_callback (self , msg):
57 self. remote_throttle = msg. throttle
58
59 def wheel_ticks_callback (self , msg):
60 self. speed = odometry . speed (msg. rearLeftTicks , msg. rearRightTicks , msg.

↪→ deltaTime , DEFAULT_ODOMETRY_PARAMS)
61
62 def publish (self , angle , throttle):
63 set_angle_msg = SetAngle ()
64 set_angle_msg . angle = angle
65 self. set_angle_pub . publish (set_angle_msg)
66
67 set_throttle_msg = SetThrottle ()
68 set_throttle_msg . throttle = throttle
69 self. set_throttle_pub . publish (set_throttle_msg)
70
71 def run(self):
72 self. image_stream . start ()
73 while self. running :
74 if not self. image_stream . running :
75 break
76
77 image = self. image_stream .read ()
78 image = np. expand_dims (image , axis =0)
79
80 prediction_start_time = datetime . datetime .now ()
81
82 prediction = self. model . predict (image , batch_size =1)
83 coords = np. array ([(float (prediction [2 * i]) , float (prediction [2 * i

↪→ + 1])) for i in range (int(len(prediction)/ 2))])
84
85 angle = motion . circular_regression (coords [0:2] , ANGLES , WHEEL_BASE)
86 speed = 1.5 if abs(coords [-1][0]) > 0.3 else 2.5
87
88 throttle = speed * self. remote_throttle
89 self. publish (np. rad2deg (angle) , throttle)

77

90
91 now = datetime . datetime .now ()
92 prediction_duration = now - prediction_start_time
93 rospy . loginfo ("\ nprediction duration : %f\ nframe processing duration : %f\n

↪→ \n" , \
94 prediction_duration . total_seconds () , self. image_stream .

↪→ last_frametime)
95
96
97 if __name__ == " __main__ ":
98 try:
99 drive = AutonomDrive ()

100 drive .run ()
101 except rospy . ROSInterruptException :
102 pass

image_stream.py

1 import cv2
2 from threading import Thread
3 import gi
4 import numpy as np
5 import numexpr as ne
6 import datetime
7 from utils import *
8 import sys
9

10 gi. require_version ("Tcam" , "0.1")
11 gi. require_version ("Gst" , "1.0")
12
13 from gi. repository import Tcam , Gst , GLib
14
15
16 class ImageStream :
17 def __init__ (self , contrast , crop_top =CROP_TOP , scale_width = IMAGE_WIDTH ,

↪→ scale_height = IMAGE_HEIGHT , frame_rate =60):
18 Gst.init(sys.argv) # init gstreamer
19 self. contrast = contrast
20 self. crop_top = crop_top
21 self. scale_width = scale_width
22 self. scale_height = scale_height
23 self. frame_rate = frame_rate
24 self. frame = None
25 self. running = False
26 self. init_pipeline ()
27 self. last_timestamp = datetime . datetime .now ()
28 self. last_frametime = 0
29
30 def init_pipeline (self):
31 source = Gst. ElementFactory .make(" tcambin ")
32 input_caps = Gst. ElementFactory .make(" capsfilter ")
33 input_caps . set_property ("caps" , Gst.Caps. from_string (" video /x-bayer ,

↪→ framerate =" + str(self. frame_rate) + "/1"))
34 queue = Gst. ElementFactory .make(" queue ")
35 queue . set_property (" leaky " , True)
36 queue . set_property ("max -size - buffers " , 2)
37 bayer2rgb = Gst. ElementFactory .make(" bayer2rgb ")
38 convert = Gst. ElementFactory .make(" videoconvert ")
39 crop = Gst. ElementFactory .make(" videocrop ")
40 crop. set_property ("top" , self. crop_top)
41 balance = Gst. ElementFactory .make(" videobalance ")
42 balance . set_property (" contrast " , self. contrast)
43 scale = Gst. ElementFactory .make(" videoscale ")
44 output = Gst. ElementFactory .make(" appsink ")

78

45 output . set_property ("caps" , Gst.Caps. from_string (" video /x-raw , format =RGB ,
↪→ width =" + str(self. scale_width) + " , height =" + str(self. scale_height))
↪→)

46 output . set_property ("emit - signals " , True)
47 output . connect ("new - sample " , self. on_new_sample)
48
49 self. pipeline = Gst. Pipeline .new ()
50 self. pipeline .add(source)
51 self. pipeline .add(input_caps)
52 self. pipeline .add(queue)
53 self. pipeline .add(bayer2rgb)
54 self. pipeline .add(convert)
55 self. pipeline .add(crop)
56 self. pipeline .add(balance)
57 self. pipeline .add(scale)
58 self. pipeline .add(output)
59
60 source .link(input_caps)
61 input_caps .link(queue)
62 queue .link(bayer2rgb)
63 bayer2rgb .link(convert)
64 convert .link(crop)
65 crop.link(balance)
66 balance .link(scale)
67 scale .link(output)
68
69 self. pipeline . set_state (Gst. State . READY)
70 if self. pipeline . get_state (10 * Gst. SECOND) [0] != Gst. StateChangeReturn .

↪→ SUCCESS :
71 raise RuntimeError (" Failed to start video stream .")
72
73 def on_new_sample (self , sink):
74 sample = sink.emit("pull - sample ")
75 if sample :
76 buf = sample . get_buffer ()
77
78 caps = sample . get_caps ()
79 width = caps. get_structure (0). get_value (" width ")
80 height = caps. get_structure (0). get_value (" height ")
81
82 try:
83 res , mapinfo = buf.map(Gst. MapFlags .READ)
84 img_array = np. asarray (bytearray (mapinfo .data) , dtype =np. uint8)
85
86 # Performance - critical section here !
87 # Keep this in mind if there ’s any change in the preprocessing !
88 frame = img_array . reshape ((height , width , 3))
89 frame = cv2. cvtColor (frame , cv2. COLOR_RGB2YUV)
90 self. frame = ne. evaluate (" frame / 127.5 - 1.0 ")
91
92 now = datetime . datetime .now ()
93 self. last_frametime = (now - self. last_timestamp). total_seconds ()
94 self. last_timestamp = now
95
96 finally :
97 buf. unmap (mapinfo)
98
99 return Gst. FlowReturn .OK

100
101 def start (self):
102 self. pipeline . set_state (Gst. State . PLAYING)
103 while self. frame is None:
104 pass
105 self. running = True
106
107 def stop(self):

79

108 self. pipeline . set_state (Gst. State . PAUSED)
109 self. pipeline . set_state (Gst. State . READY)
110 self. pipeline . set_state (Gst. State .NULL)
111 self. frame = None
112 self. running = False
113
114 def read(self):
115 return self. frame

motion.py
1 # -* - coding : utf -8 -* -
2 import numpy as np
3 import odometry
4 from scipy . spatial . distance import euclidean
5 from scipy . optimize import minimize
6 import datetime
7 from parameters import *
8
9

10 def angle_to_turn_radius (angle , wheelbase):
11 return wheelbase / np.tan(angle) if angle != 0.0 else float ("inf")
12
13
14 def turn_radius_to_angle (turn_radius , wheelbase):
15 return np. arctan (wheelbase / turn_radius) if turn_radius != 0.0 else 0.0
16
17
18 def circular_regression (coords , angles , wheelbase):
19 min_err = float ("inf")
20 final_angle = 0
21 for angle in angles :
22 err = 0
23 if angle == 0.0:
24 for c in coords :
25 err += c [0] ** 2
26 else :
27 r = angle_to_turn_radius (angle , wheelbase)
28 for c in coords :
29 err += (np.sqrt ((c[0] - r) ** 2 + c [1] ** 2) - abs(r)) ** 2
30 if err < min_err :
31 min_err = err
32 final_angle = angle
33 return final_angle
34
35
36 def circular_regression_numerically (coords , angles , wheelbase):
37 def err(angle , coords):
38 if angle == 0:
39 return np.mean ([c [0]**2 for c in coords])
40 r = angle_to_turn_radius (angle , WHEEL_BASE)
41 return np.mean ([(np.sqrt ((c[0] - r) ** 2 + c [1] ** 2) - abs(r)) ** 2 for c in

↪→ coords])
42
43 min_angle = np. deg2rad (-30)
44 max_angle = np. deg2rad (30)
45
46 result = minimize (err , 0 , (coords) , bounds =[(min_angle , max_angle)], method ="L-

↪→ BFGS -B" , options ={" maxiter " : 10})
47 return result ["x"]
48
49
50 def compute_turns (coords , wheel_base):
51 coords1 = coords [0:3]
52 angle1 = circular_regression (coords1 , ANGLES , wheel_base)

80

53
54 direction2 = odometry . direction (coords , 1)
55 odom2 = coords [1:4]
56 distance2 = odometry . distance (odom2)
57 coords2 = odometry . trajectory_coords (odom2 , 0 , direction2 , 2 , distance2

↪→ / 2 - 0.00001)
58 angle2 = circular_regression (coords2 , ANGLES , wheel_base)
59
60 return angle1 , angle2
61
62
63 def compute_future_angle (curr_angle , set_angle , angle_change_rate , time):
64 angle_direction = 1 if set_angle >= curr_angle else -1
65 future_angle = curr_angle + (angle_direction * angle_change_rate * time)
66 return min(future_angle , set_angle) if angle_direction == 1 else \
67 max(future_angle , set_angle)
68
69
70 class CurrentAngleEstimator :
71 def __init__ (self , turn_speed , initial_curr_angle =0.0 , initial_set_angle =0.0 ,

↪→ confidence_duration =0.5) :
72 """
73 confidence_duration : If the angle hasn ’t changed much for ’

↪→ confidence_duration ’ seconds ,
74 we can assume that we ’re driving the set angle .
75 """
76 self. turn_speed = turn_speed
77 self. curr_angle = initial_curr_angle
78 self. last_set_angle = initial_set_angle
79 self. last_set_timestamp = datetime . datetime .now ()
80 self. last_hard_turn_timestamp = datetime . datetime .now ()
81 self. confidence_duration = confidence_duration # s
82
83 def update (self , set_angle):
84 now = datetime . datetime .now ()
85 last_set_angle = self. last_set_angle
86 last_set_timestamp = self. last_set_timestamp
87 self. last_set_angle = set_angle
88 self. last_set_timestamp = now
89
90 if abs(set_angle - self. curr_angle) > DELTA_ANGLE_TOLERANCE :
91 self. last_hard_turn_timestamp = now
92
93 if (now - self. last_hard_turn_timestamp). total_seconds () >= self.

↪→ confidence_duration :
94 self. curr_angle = set_angle
95 return
96
97 self. curr_angle = compute_future_angle (self. curr_angle , last_set_angle , self.

↪→ turn_speed , (now - last_set_timestamp). total_seconds ())

odometry.py
1 # -* - coding : utf -8 -* -
2 import numpy as np
3 from scipy . spatial . distance import euclidean
4 from scipy . optimize import minimize
5 import pandas as pd
6 from matplotlib import pyplot as plt
7 from matplotlib import cm
8 from keras . models import load_model
9 import cv2

10 import utils
11 import motion
12 import datetime

81

13 from parameters import *
14
15
16 def normalize_vector (x):
17 n = np. linalg .norm(x)
18 return 0 if n == 0 else x / n
19
20
21 def follow (odom , idx , dist , backwards = False):
22 inc = -1 if backwards else 1
23 i0 = idx
24 i1 = i0 + inc
25 if i1 < 0 or i1 >= len(odom):
26 raise ValueError ("Not enough coordinates !")
27 p0 = odom[i0]
28 p1 = odom[i1]
29 acc_dist = 0
30 next_dist = euclidean (p0 , p1)
31
32 while acc_dist + next_dist <= dist + FLOAT_TOLERANCE :
33 acc_dist += euclidean (p0 , p1)
34 i0 = i1
35 i1 = i1 + inc
36 if i1 < 0 or i1 >= len(odom):
37 raise ValueError ("Not enough coordinates !")
38 p0 = odom[i0]
39 p1 = odom[i1]
40 next_dist = euclidean (p0 , p1)
41
42 if acc_dist == dist:
43 return p0 , i0
44 direction = normalize_vector (p1 - p0)
45 rest_dist = dist - acc_dist
46 v = rest_dist * direction
47 return v + p0 , i0
48
49
50 def distance (odom):
51 if len(odom) < 2:
52 raise ValueError (" Cannot measure the distance of odom of size < 2.")
53 dist = 0
54 for i in range (len(odom) - 1):
55 dist += euclidean (odom[i], odom[i + 1])
56 return dist
57
58
59 def plot_odometry (odom , ax=None , start_idx =0 , end_idx =-1, color ="gray" , strength =1 ,

↪→ elements =None):
60 x = [coord [0] for coord in odom]
61 y = [coord [1] for coord in odom]
62 if elements is None:
63 return ax.plot(x[start_idx : end_idx], y[start_idx : end_idx], "o" , markersize =

↪→ strength , color = color)[0]
64 elements . set_data (x[start_idx : end_idx], y[start_idx : end_idx])
65
66
67 def plot_future (odom , idx , odom_ax =None , future_ax =None , elements =None):
68 out_elements = {}
69 p = odom[idx]
70
71 if elements is None:
72 out_elements [" current_pos "] = odom_ax .plot(p[0] , p[1] , "o" , markersize =5 ,

↪→ color ="b")[0]
73 out_elements [" future "] = []
74 else :
75 elements [" current_pos "]. set_data (p[0] , p[1])

82

76
77 for i in range (utils . NUM_COORDS_TO_PREDICT):
78 q , _ = follow (odom , idx , (i + 1) * COORD_SPACING)
79 if elements is None:
80 out_elements [" future "]. append (odom_ax .plot(q[0] , q[1] , "o" , markersize

↪→ =5 , color ="r")[0])
81 else :
82 elements [" future "][i]. set_data (q[0] , q[1])
83
84 # find the index where we start to move
85 start_of_motion = idx
86 while np. array_equal (direction (odom , start_of_motion) , (0 , 0)): start_of_motion

↪→ += 1
87
88 coords = trajectory_coords (odom , idx , direction (odom , start_of_motion) ,

↪→ NUM_COORDS_TO_PREDICT , COORD_SPACING)
89 x = [coord [0] for coord in coords]
90 y = [coord [1] for coord in coords]
91 angle = motion . circular_regression (coords [0:2] , ANGLES , WHEEL_BASE)
92 r = motion . angle_to_turn_radius (angle , WHEEL_BASE)
93 label = " ground truth angle : {}". format (np. rad2deg (angle))
94 if elements is None:
95 out_elements [" coords "] = future_ax .plot(x , y , "o" , markersize =5 , color ="r")

↪→ [0]
96 out_elements ["zero"] = future_ax .plot (0 , 0 , "o" , markersize =5 , color ="b")[0]
97 out_elements [" circle "] = plot_circle (r , label , future_ax , color ="r" , pos

↪→ =(0.05 , 0.15))
98 return out_elements
99 else :

100 elements [" coords "]. set_data (x , y)
101 elements ["zero"]. set_data (0 , 0)
102 plot_circle (r , label , elements = elements [" circle "])
103
104
105 def plot_prediction (idx , model , data_dir , odom_ax =None , future_ax =None , image_ax =None

↪→ , elements =None):
106 out_elements = {}
107
108 image = utils . load_image (data_dir , "img -" + str(idx) + ".jpg")
109 if elements is None:
110 out_elements [" image "] = image_ax . imshow (mark_image (image)) if image_ax is not

↪→ None else None
111 else :
112 if elements [" image "] is not None:
113 elements [" image "]. set_data (mark_image (image))
114 image = utils . preprocess_image (image)
115 image = np. expand_dims (image , axis =0)
116 prediction = model . predict (image , batch_size =1)
117 coords = np. array ([(float (prediction [2 * i]) , float (prediction [2 * i + 1])) for i

↪→ in range (int(len(prediction)/ 2))])
118 x = [coord [0] for coord in coords]
119 y = [coord [1] for coord in coords]
120 angle = motion . circular_regression (coords [0:2] , ANGLES , WHEEL_BASE)
121 r = motion . angle_to_turn_radius (angle , WHEEL_BASE)
122 label = " predicted angle : {}". format (np. rad2deg (angle))
123
124 if elements is None:
125 out_elements [" future "] = future_ax .plot(x , y , "o" , markersize =5 , color ="g")

↪→ [0]
126 out_elements [" circle "] = plot_circle (r , label , future_ax , color ="g")
127 return out_elements
128 else :
129 elements [" future "]. set_data (x , y)
130 plot_circle (r , label , elements = elements [" circle "])
131
132

83

133 def plot_circle (r , label , ax=None , color ="b" , pos =(0.05 , 0.05) , elements =None):
134 out_elements = {}
135
136 if elements is None:
137 circle = plt. Circle ((r , 0) , r , color =color , fill= False)
138 ax. add_artist (circle)
139 out_elements [" circle "] = circle
140 text_props = dict(boxstyle =’round ’ , facecolor =’wheat ’ , alpha =0.5)
141 out_elements ["text"] = ax.text(pos [0] , pos [1] , label ,
142 transform =ax.transAxes , fontsize =10 , verticalalignment =’bottom ’ , bbox=

↪→ text_props)
143 else :
144 elements [" circle "]. set_radius (r)
145 elements [" circle "]. center = (r , 0)
146 elements ["text"]. set_text (label)
147
148 if elements is None:
149 return out_elements
150
151
152 def mark_image (image):
153 image = image .copy ()
154 image [279 + 1][:] = [255 , 0 , 0]
155 image [279 + 0][:] = [255 , 0 , 0]
156 image [279 + -1][:] = [255 , 0 , 0]
157
158 image [306 + 1][:] = [255 , 0 , 0]
159 image [306 + 0][:] = [255 , 0 , 0]
160 image [306 + -1][:] = [255 , 0 , 0]
161
162 image [364 + 1][:] = [255 , 0 , 0]
163 image [364 + 0][:] = [255 , 0 , 0]
164 image [364 + -1][:] = [255 , 0 , 0]
165
166 # 0.5 m
167 cv2.line(image , (493 , 240) , (744 , 444) , (0 , 255 , 0) , 2)
168 cv2.line(image , (251 , 240) , (0 , 444) , (0 , 255 , 0) , 2)
169 # 1.0 m
170 cv2.line(image , (744 , 326) , (532 , 240) , (0 , 255 , 0) , 2)
171 cv2.line(image , (0 , 326) , (212 , 240) , (0 , 255 , 0) , 2)
172
173 cv2.line(image , (372 , 240) , (372 , 480) , (0 , 255 , 0) , 2)
174 return image
175
176
177 def rotation_matrix (angle):
178 """ angle in radians """
179 c , s = np.cos(angle) , np.sin(angle)
180 return np. array (((c, -s) , (s , c)))
181
182
183 def direction (odom , idx):
184 if idx == 0:
185 return np. array ((0 , 0))
186 c = odom[idx]
187 i = idx - 1
188 d = c - odom[i]
189 while i > 0 and np. array_equal (d , (0 , 0)):
190 i -= 1
191 d = c - odom[i]
192 return d
193
194
195 def trajectory_coords (odom , idx , direction , num_coords , coord_spacing):
196 if np. array_equal (direction , (0 , 0)):
197 ValueError ("’direction ’ must not be (0 , 0).")

84

198 # handle divide by zero case
199 if direction [0] == 0.0:
200 angle = 0.0 if direction [1] >= 0 else np.pi
201 else :
202 angle = np. arctan (direction [1] / direction [0])
203 angle += 0.5 * np.pi if direction [0] < 0 else 1.5 * np.pi
204 rotation = rotation_matrix (- angle)
205 coords = np. empty ([num_coords , 2])
206 for i in range (num_coords):
207 coord , _ = follow (odom , idx , coord_spacing * (i + 1))
208 coord -= odom[idx]
209 coord = np.dot(rotation , coord)
210 coords [i] = coord
211 return coords
212
213
214 class OdometryBuilder :
215 def __init__ (self , resolution):
216 self. resolution = resolution
217 self.odom = np. array ([(0 , 0)])
218 self.p = np. array ((0 , 0))
219
220 def left(self , s):
221 coords = np. empty ([int(s / self. resolution) , 2])
222 for i in range (len(coords)):
223 coords [i][0] = self.p[0] - (i + 1) * self. resolution
224 coords [i][1] = self.p[1]
225 self.p = self.p - (s , 0)
226 if len(coords) == 0 or coords [-1][0] != self.p[0]:
227 coords = np. append (coords , [self.p], axis =0)
228 self.odom = np. append (self.odom , coords , axis =0)
229 return self
230
231 def right (self , s):
232 coords = np. empty ([int(s / self. resolution) , 2])
233 for i in range (len(coords)):
234 coords [i][0] = self.p [0] + (i + 1) * self. resolution
235 coords [i][1] = self.p[1]
236 self.p = self.p + (s , 0)
237 if len(coords) == 0 or coords [-1][0] != self.p[0]:
238 coords = np. append (coords , [self.p], axis =0)
239 self.odom = np. append (self.odom , coords , axis =0)
240 return self
241
242 def up(self , s):
243 coords = np. empty ([int(s / self. resolution) , 2])
244 for i in range (len(coords)):
245 coords [i][0] = self.p[0]
246 coords [i][1] = self.p [1] + (i + 1) * self. resolution
247 self.p = self.p + (0 , s)
248 if len(coords) == 0 or coords [-1][1] != self.p[1]:
249 coords = np. append (coords , [self.p], axis =0)
250 self.odom = np. append (self.odom , coords , axis =0)
251 return self
252
253 def down(self , s):
254 coords = np. empty ([int(s / self. resolution) , 2])
255 for i in range (len(coords)):
256 coords [i][0] = self.p[0]
257 coords [i][1] = self.p[1] - (i + 1) * self. resolution
258 self.p = self.p - (0 , s)
259 if len(coords) == 0 or coords [-1][1] != self.p[1]:
260 coords = np. append (coords , [self.p], axis =0)
261 self.odom = np. append (self.odom , coords , axis =0)
262 return self
263

85

264
265 def reference_odometry_cw (resolution =0.1) :
266 builder = OdometryBuilder (resolution)
267 builder . right (3).down (3).left (3).up (3)
268 return builder .odom
269
270
271 def reference_odometry_ccw (resolution =0.1) :
272 builder = OdometryBuilder (resolution)
273 builder . right (3).up (3).left (3).down (3)
274 return builder .odom
275
276
277 def load_data (csv):
278 data_df = pd. read_csv (csv , usecols =["x" , "y" , " ticksRL " , " ticksRR "])
279 odom = data_df [["x" , "y"]]. values . astype (np. float64)
280 ticks = data_df [[" ticksRL " , " ticksRR "]]. values . astype (np. float64)
281 return odom , ticks
282
283
284 def compress_ticks (ticks , steps):
285 n = int(len(ticks) / steps)
286 compressed_ticks = np. empty ([n , 2])
287 for i in range (n):
288 dts_left = 0
289 dts_right = 0
290 for j in range (steps):
291 dts_left += ticks [i * steps + j][0]
292 dts_right += ticks [i * steps + j][1]
293 compressed_ticks [i][0] = dts_left
294 compressed_ticks [i][1] = dts_right
295 return compressed_ticks
296
297
298 def ticks_to_odometry (ticks , params):
299 odom = np. empty ([len(ticks) , 2])
300 x = 0
301 y = 0
302 yaw = 0
303 for i , item in enumerate (ticks):
304 ticks_rl , ticks_rr = item
305 dts_left = ticks_rl * params . dts_tick_left
306 dts_right = ticks_rr * params . dts_tick_right
307 dts = (dts_left + dts_right) / 2.0
308 dt_yaw = (dts_right - dts_left) / params . track_width
309 x += np.cos(yaw) * dts * 0.001
310 y += np.sin(yaw) * dts * 0.001
311 yaw += dt_yaw
312 odom[i][0] = x
313 odom[i][1] = y
314 return odom
315
316
317 def speed (ticks_left , ticks_right , delta_time , params):
318 dts_left = ticks_left * params . dts_tick_left
319 dts_right = ticks_right * params . dts_tick_right
320 dts = (dts_left + dts_right) / 2.0
321 return (dts * 0.001) / delta_time
322
323
324 def mean_squared_distance_error (odom1 , odom2 , resolution , ax=None):
325 dist1 = distance (odom1)
326 dist2 = distance (odom2)
327 dist = min(dist1 , dist2)
328 n = int(dist / resolution) - 1
329 # err = (dist1 - dist2) ** 2

86

330 err = 0
331 for i in range (1 , n):
332 p1 , _ = follow (odom1 , 0 , i * resolution)
333 p2 , _ = follow (odom2 , 0 , i * resolution)
334 if ax is not None:
335 ax.plot ([p1 [0] , p2 [0]] , [p1 [1] , p2 [1]] , color =" black ")
336 err += euclidean (p1 , p2) ** 2
337 return err / n
338
339
340 def reference_error (x , reference_odom_to_ticks_list , resolution):
341 """
342 reference_odom_to_ticks_list :
343 [(reference_odom_1 , [ticks_1 , ticks_2 , ticks_3]) ,
344 (reference_odom_2 , [ticks_1 , ticks_2 , ticks_3]) ,
345
346 (reference_odom_n , [ticks_1 , ticks_2 , ticks_3])]
347 """
348 params = OdometryParams (x[0] , x[1] , x[2])
349 err = 0
350 n = 0
351 for item in reference_odom_to_ticks_list :
352 reference_odom = item [0]
353 ticks_list = item [1]
354 n += len(ticks_list)
355 for ticks in ticks_list :
356 odom_reconstructed = ticks_to_odometry (ticks , params)
357 err += mean_squared_distance_error (reference_odom , odom_reconstructed ,

↪→ resolution)
358 return err / n
359
360
361 def mean_center_error (x , cw , ccw):
362 params = OdometryParams (x[0] , x[1] , x[2])
363 odoms_cw = [ticks_to_odometry (t , params) for t in cw]
364 odoms_ccw = [ticks_to_odometry (t , params) for t in ccw]
365 center_err_cw = np. linalg .norm(mean_center_of_gravity (odoms_cw))
366 center_err_ccw = np. linalg .norm(mean_center_of_gravity (odoms_ccw))
367 distance_err = np.mean ([abs (12 - distance (odom)) for odom in np. append (odoms_cw ,

↪→ odoms_ccw , axis =0)])
368 print (" center_err : " + str(max(center_err_cw , center_err_ccw)))
369 print (" distance_err : " + str(distance_err))
370 return max(center_err_cw , center_err_ccw) + distance_err
371
372
373 def mean_offset_error (x , cw , ccw):
374 err = 0
375 params = OdometryParams (x[0] , x[1] , x[2])
376
377 odoms_cw = [ticks_to_odometry (t , params) for t in cw]
378 odoms_ccw = [ticks_to_odometry (t , params) for t in ccw]
379
380 err += np.mean ([(odom[int (0.175 * len(odom))][1] - 0.0) **2 for odom in odoms_cw])
381 err += np.mean ([(odom[int (0.175 * len(odom))][1] - 0.0) **2 for odom in odoms_ccw

↪→])
382
383 err += np.mean ([(odom[int (0.375 * len(odom))][0] - 3.0) **2 for odom in odoms_cw])
384 err += np.mean ([(odom[int (0.375 * len(odom))][0] - 3.0) **2 for odom in odoms_ccw

↪→])
385
386 err += np.mean ([(odom[int (0.55 * len(odom))][1] - (-3.0))**2 for odom in odoms_cw

↪→])
387 err += np.mean ([(odom[int (0.55 * len(odom))][1] - 3.0) **2 for odom in odoms_ccw])
388
389 err += np.mean ([(odom[int (0.75 * len(odom))][0] - 0.0) **2 for odom in odoms_cw])
390 err += np.mean ([(odom[int (0.75 * len(odom))][0] - 0.0) **2 for odom in odoms_ccw])

87

391
392 err += np.mean ([np. linalg .norm(odom [-1]) **2 for odom in odoms_cw])
393 err += np.mean ([np. linalg .norm(odom [-1]) **2 for odom in odoms_ccw])
394
395 return err / 10.0
396
397
398 def mean_center_of_gravity (odoms):
399 cog = np. array ([odom [-1] for odom in odoms])
400 x = np.mean(cog [: ,0])
401 y = np.mean(cog [: ,1])
402 return np. array ((x , y))
403
404
405 def manual_calibration (fig , ax , ticks_list , params):
406 isarray = isinstance (ax , (list , tuple , np. ndarray))
407 lines_list = []
408 mean_distance = 0
409 for i , ticks in enumerate (ticks_list):
410 odom = ticks_to_odometry (ticks , params)
411 mean_distance += distance (odom)
412 axis = ax[i] if isarray else ax
413 lines , = axis.plot ([o[0] for o in odom] , [o[1] for o in odom], "ro" ,

↪→ markersize =1)
414 lines_list . append (lines)
415 mean_distance /= len(ticks_list)
416
417 text_props = dict(boxstyle =’round ’ , facecolor =’wheat ’ , alpha =0.5)
418 label = "dts left : {}\ ndts right : {}\ ntrack width : {}\ nmean distance : {}". format (
419 params . dts_tick_left , params . dts_tick_right , params . track_width ,

↪→ mean_distance)
420 axis = ax [0] if isarray else ax
421 text = axis.text (0.05 , 0.95 , label , transform =axis.transAxes , fontsize =14 ,
422 verticalalignment =’top ’ , bbox= text_props)
423
424 def event_handler (event):
425 dts_step = 0.005
426 track_step = 0.5
427 if event .key == "t":
428 params . dts_tick_left += dts_step
429 elif event .key == "g":
430 params . dts_tick_left -= dts_step
431 elif event .key == "i":
432 params . dts_tick_right += dts_step
433 elif event .key == "k":
434 params . dts_tick_right -= dts_step
435 elif event .key == "ü":
436 params . track_width += track_step
437 elif event .key == "ä":
438 params . track_width -= track_step
439 mean_distance = 0
440 for i , ticks in enumerate (ticks_list):
441 odom = ticks_to_odometry (ticks , params)
442 mean_distance += distance (odom)
443 lines_list [i]. set_data ([o[0] for o in odom] , [o[1] for o in odom])
444 mean_distance /= len(ticks_list)
445 text. set_text ("dts left : {}\ ndts right : {}\ ntrack width : {}\ nmean distance

↪→ : {}". format (
446 params . dts_tick_left , params . dts_tick_right , params . track_width ,

↪→ mean_distance))
447
448 fig. canvas . mpl_connect (" key_press_event " , event_handler)
449 plt.ion ()
450 while True:
451 plt. pause (0.1)
452

88

453
454 def UMBmark_optimize (b , D_L , D_R , dts_L , dts_R , cog_cw , cog_ccw , L):
455 """
456 b: wheel base : distance between the two wheels
457 D_L : diameter of left wheel
458 D_R : diameter of right wheel
459 dts_L : left wheel travel per encoder pulse
460 dts_R : right wheel travel per encoder pulse
461 cog_cw : center of gravity in clockwise direction
462 cog_ccw : center of gravity in counter - clockwise direction
463 L: length of the square the robot has driven
464 """
465 alpha = (cog_cw [0] + cog_ccw [0]) / (-4 * L)
466 beta = (cog_cw [0] - cog_ccw [0]) / (-4 * L)
467
468 R = (L / 2) / (np.sin(beta / 2))
469 Ed = (R + (b / 2)) / (R - (b / 2))
470 D_a = (D_R + D_L) / 2
471 D_L = (2 / (Ed + 1)) * D_a
472 D_R = (2 / (1 / Ed) + 1) * D_a
473 c_L = 2 / (Ed + 1)
474 c_R = 2 / ((1 / Ed) + 1)
475 dts_L *= c_L
476 dts_R *= c_R
477
478 E_b = (np.pi / 2) / ((np.pi / 2) - alpha)
479 b *= E_b
480
481 return b , D_L , D_R , dts_L , dts_R
482
483
484 def load_square_ticks (compression_steps =5):
485 cw = [compress_ticks (load_data ("/ media / philipp / Transcend / odometryCalibration /cw/"

↪→ + str(i) + ".csv")[1] , compression_steps) for i in range (5)]
486 ccw = [compress_ticks (load_data ("/ media / philipp / Transcend / odometryCalibration /ccw

↪→ /" + str(i) + ".csv")[1] , compression_steps) for i in range (5)]
487
488 cw = [cw[i] for i in [2 , 3]]
489 ccw = [ccw[i] for i in [0 , 1 , 2 , 4]]
490
491 return cw , ccw

parameters.py
1 # -* - coding : utf -8 -* -
2 import numpy as np
3
4
5 class OdometryParams :
6 def __init__ (self , dts_tick_left , dts_tick_right , track_width):
7 """ all units are given in millimeters """
8 self. dts_tick_left = dts_tick_left #
9 self. dts_tick_right = dts_tick_right

10 self. track_width = track_width
11
12 def __str__ (self):
13 return " dts_tick_left : {} mm\ ndts_tick_right : {} mm\ ntrack_width : {} mm".

↪→ format (
14 self. dts_tick_left , self. dts_tick_right , self. track_width)
15
16
17 ANGLES = [np. deg2rad (deg) for deg in list(range (-30 , 31))]
18 LOOK_AHEAD_DISTANCE = 2 # m
19 GRAVITY_ACC = 9.81 # m / s^2
20 WHEEL_BASE = 0.32 # m

89

21 # WHEEL_BASE = 0.2304363
22 # the wheels turn from full left (-30) to full right (30) in approx . 0.5 seconds
23 ANGLE_CHANGE_RATE = np. deg2rad (20) # rad / s
24 MAX_ANGLE_DELAY_DISTANCE = 0.2 # m
25 # defines a delta angle tolerance for comparing two angles :
26 # angle_1 ~ angle_2 if abs(angle_1 - angle_2) <= DELTA_ANGLE_TOLERANCE
27 DELTA_ANGLE_TOLERANCE = np. deg2rad (1) # rad
28 STRAIGHT_ANGLE_TOLERANCE = np. deg2rad (10)
29 ANGLE_ESTIMATOR_CONFIDENCE_DURATION = 0.5 # s
30 STATIC_FRICTION_COEF = 1.0
31
32 IMAGE_HEIGHT , IMAGE_WIDTH , IMAGE_CHANNELS = 100 , 200 , 3
33 INPUT_SHAPE = (IMAGE_HEIGHT , IMAGE_WIDTH , IMAGE_CHANNELS)
34 COORD_SPACING = 0.6 # m
35 NUM_COORDS_TO_PREDICT = int(LOOK_AHEAD_DISTANCE / COORD_SPACING)
36 CROP_TOP = 200
37
38 FLOAT_TOLERANCE = 10e -6
39 DISC_RESOLUTION = 120
40 WHEEL_DIAMETER = 0.11 # m
41 # original
42 # DTS_TICK_LEFT = (np.pi * WHEEL_DIAMETER / DISC_RESOLUTION) * 1000.0 # mm
43 # DTS_TICK_RIGHT = (np.pi * WHEEL_DIAMETER / DISC_RESOLUTION) * 1000.0 # mm
44 # TRACK_WIDTH = 275 # mm
45 # end up using
46 DTS_TICK_LEFT = (np.pi * WHEEL_DIAMETER / DISC_RESOLUTION) * 1000.0 - 0.01 + 0.3 # mm
47 DTS_TICK_RIGHT = (np.pi * WHEEL_DIAMETER / DISC_RESOLUTION) * 1000.0 + 0.01 + 0.3 #

↪→ mm
48 TRACK_WIDTH = 305 # mm
49
50 ERROR_RESOLUTION = 1 # m
51 SHOULD_OPTIMIZE = True
52 OPTIMIZATION_METHOD = "BFGS"
53 MAX_ITERATIONS = 100
54 SQUARE_LENGTH = 3 # m
55 SQUARE_DISTANCE = 4 * SQUARE_LENGTH # m
56 SQUARE_DISTANCE_TOLERANCE = 1
57 DEFAULT_ODOMETRY_PARAMS = OdometryParams (DTS_TICK_LEFT , DTS_TICK_RIGHT , TRACK_WIDTH)

saliency.py
1 from vis. visualization import visualize_saliency , visualize_cam , overlay
2 from keras import activations
3 from utils import *
4 from vis. utils import utils
5 from keras . models import load_model
6 from matplotlib import pyplot as plt
7 import numpy as np
8 import cv2
9 from keras . models import Model

10 from matplotlib import cm
11
12 # ----
13 # hella images
14 # ---
15 images = [
16 load_image ("I:/ recordings /data -2018 -08 -31 -12 -12 -14" , "img -300. jpg") , # left ,

↪→ ideal line
17 load_image ("I:/ recordings /data -2018 -08 -31 -12 -12 -14" , "img -6175. jpg") , # right ,

↪→ ideal line
18 load_image ("I:/ recordings /data -2018 -08 -31 -12 -12 -14" , "img -351. jpg") , # right ,

↪→ ideal line
19 load_image ("I:/ recordings /data -2018 -08 -31 -10 -42 -27" , "img -10937. jpg") , # right ,

↪→ center line
20

90

21 load_image ("I:/ recordings /data -2018 -08 -31 -10 -42 -27" , "img -625. jpg") , # straight ,
↪→ center line

22 load_image ("I:/ recordings /data -2018 -08 -31 -10 -42 -27" , "img -9880. jpg") , # right ,
↪→ center line

23
24 # afternoon
25 load_image ("I:/ recordings /data -2018 -09 -07 -15 -59 -32" , "img -180. jpg"),
26 load_image ("I:/ recordings /data -2018 -09 -07 -15 -59 -32" , "img -820. jpg"),
27 load_image ("I:/ recordings /data -2018 -09 -07 -15 -59 -32" , "img -1110. jpg"),
28
29 load_image ("I:/ recordings /data -2018 -09 -07 -15 -59 -32" , "img -10450. jpg"),
30 load_image ("I:/ recordings /data -2018 -09 -07 -15 -59 -32" , "img -11300. jpg"),
31 load_image ("I:/ recordings /data -2018 -09 -07 -15 -42 -32" , "img -390. jpg"),
32]
33
34 # ----
35 # flur images
36 # ---
37 # images = [
38 # load_image ("I:/ recordings /data -2018 -09 -08 -17 -19 -41" , " img -540. jpg ") ,
39 # load_image ("I:/ recordings /data -2018 -09 -08 -17 -19 -41" , " img -610. jpg ") ,
40 # load_image ("I:/ recordings /data -2018 -09 -08 -17 -19 -41" , " img -660. jpg ") ,
41 # load_image ("I:/ recordings /data -2018 -09 -08 -17 -19 -41" , " img -1460. jpg ") ,
42 # load_image ("I:/ recordings /data -2018 -09 -08 -17 -19 -41" , " img -1515. jpg ") ,
43 # load_image ("I:/ recordings /data -2018 -09 -08 -17 -19 -41" , " img -2090. jpg ") ,
44 #]
45
46 model = load_model ("G:/ car/ models /model -040. h5")
47
48 fig , axes = plt. subplots (int(len(images) / 3) , 3)
49
50 layer_idx = 6
51 model . layers [layer_idx]. activation = activations . linear
52 model = utils . apply_modifications (model)
53 for i , image in enumerate (images):
54 image = preprocess_image (image)
55 grads = visualize_saliency (model , layer_idx , filter_indices =None , seed_input =

↪→ image , backprop_modifier =" guided ")
56 jet_grads = (np. delete (cm.jet(grads) , 3 , 2) * 255.0) . astype (np. uint8)
57
58 image = (image + 1.0) * 127.5
59 image = image . astype (np. uint8)
60 image = cv2. cvtColor (image , cv2. COLOR_YUV2RGB)
61
62 axes[int(i/3) , int(i%3)]. imshow (overlay (image , jet_grads , alpha =0.3))
63
64 plt.show ()

train.py
1 import numpy as np
2 np. random .seed (0)
3 import pandas as pd
4 from sklearn . cross_validation import train_test_split
5 from keras . models import Sequential , Model
6 import keras . regularizers
7 from keras . optimizers import Adam
8 from keras . callbacks import ModelCheckpoint , TensorBoard , CSVLogger
9 from keras . layers import Lambda , Convolution2D , MaxPooling2D , Dropout , Dense , Flatten

↪→ , Input , BatchNormalization
10 from keras import regularizers
11 from utils import *
12 import argparse
13 import os
14 from time import time

91

15 import odometry
16 import json
17 import merge
18
19
20 def load_data (args):
21 X = y = None
22
23 with open(args. training_config , "r") as f:
24 config = json.load(f)
25 recordings = config [" recordings "]
26 for recording in recordings :
27 directory = recording [" directory "]
28 csv = os.path.join(directory , "data.csv")
29 data_df = pd. read_csv (csv)
30 contains_subsequences = " recording " in data_df
31
32 image_paths_recording = [os.path.join(directory , img. strip ()) for img in

↪→ data_df ["img"]. values]
33
34 odom_params = read_odometry_params (
35 recording [" odometryParameters "]) if " odometryParameters " in recording

↪→ \
36 else DEFAULT_ODOMETRY_PARAMS
37
38 ticks = data_df [[" ticksRL " , " ticksRR "]]. values . astype (np. float64)
39 odom_recording = odometry . ticks_to_odometry (ticks , odom_params)
40
41 for sequence in merge . sequences_from_json (recording [" sequences "]):
42 sequence_start = sequence [0]
43 sequence_end = sequence [1]
44
45 subsequences = get_subsequences (data_df , sequence_start , sequence_end

↪→) \
46 if contains_subsequences \
47 else [(sequence_start , sequence_end)]
48
49 for subsequence in subsequences :
50 subsequence_start = subsequence [0]
51 subsequence_end = subsequence [1]
52 subsequence_odom = np. array ([odom_recording [i] for i in range (

↪→ subsequence_start , subsequence_end + 1)])
53 try : subsequence_coords_list , first_idx , last_idx =

↪→ get_coords_list (subsequence_odom)
54 except ValueError : continue
55 subsequence_image_paths = np. array ([image_paths_recording [i]
56 for i in range (subsequence_start +

↪→ first_idx , subsequence_start +
↪→ last_idx + 1)])

57
58 X = np. append (X , subsequence_image_paths , axis =0) if X is not

↪→ None else np. array (subsequence_image_paths)
59 y = np. append (y , subsequence_coords_list , axis =0) if y is not

↪→ None else np. array (subsequence_coords_list)
60
61 X_train , X_valid , y_train , y_valid = train_test_split (X , y , test_size =args.

↪→ test_size , random_state =1)
62 return X_train , X_valid , y_train , y_valid
63
64
65 def get_coords_list (odom):
66 # from every coordinate in the training set we must be able
67 # to travel a distance of (NUM_COORDS_TO_PREDICT * COORD_SPACING) into the future
68 _ , last_idx = odometry . follow (odom , len(odom) - 1 , NUM_COORDS_TO_PREDICT *

↪→ COORD_SPACING , backwards =True)
69 last_idx -= 1

92

70 if last_idx < 0:
71 raise ValueError ("Not enough coordinates !")
72 # find the index where we start to move + 1
73 # which is where direction () does not return (0 , 0)
74 first_idx = 0
75 while np. array_equal (odometry . direction (odom , first_idx) , (0 , 0)): first_idx += 1
76 # get list of coordinates to predict
77 coords_list = [
78 odometry . trajectory_coords (odom , i , odometry . direction (odom , i) ,

↪→ NUM_COORDS_TO_PREDICT , COORD_SPACING)
79 for i in range (first_idx , last_idx + 1)]
80 return coords_list , first_idx , last_idx
81
82
83 def get_subsequences (data_df , section_start , section_end):
84 subsequences = []
85 subsequence_start = None
86 recording = False
87 for i in range (section_start , section_end + 1) :
88 recording = bool(data_df [" recording "][i])
89 if recording :
90 if subsequence_start is None:
91 subsequence_start = i
92 elif subsequence_start is not None:
93 subsequences . append ((subsequence_start , i - 1))
94 subsequence_start = None
95 if subsequence_start is not None and recording :
96 subsequences . append ((subsequence_start , i))
97 return subsequences
98
99

100 def read_odometry_params (jparams):
101 dts_tick_left_mm = float (jparams [" dts_tick_left_mm "]) if " dts_tick_left_mm " in

↪→ jparams else odometry . DEFAULT_ODOMETRY_PARAMS . dts_tick_left_mm
102 dts_tick_right_mm = float (jparams [" dts_tick_right_mm "]) if " dts_tick_right_mm " in

↪→ jparams else odometry . DEFAULT_ODOMETRY_PARAMS . dts_tick_right_mm
103 track_width_mm = float (jparams [" track_width_mm "]) if " track_width_mm " in jparams

↪→ else odometry . DEFAULT_ODOMETRY_PARAMS . track_width_mm
104 return odometry . OdometryParams (dts_tick_left_mm , dts_tick_right_mm ,

↪→ track_width_mm)
105
106
107 def build_model_nvidia (args):
108 img_in = Input (shape = INPUT_SHAPE , name=’img_in ’)
109
110 x = img_in
111 x = BatchNormalization (axis =3)(x)
112 x = Convolution2D (24 , (5 , 5) , strides =(2 , 2) , activation =’relu ’)(x)
113 x = Convolution2D (36 , (5 , 5) , strides =(2 , 2) , activation =’relu ’)(x)
114 x = Convolution2D (48 , (5 , 5) , strides =(2 , 2) , activation =’relu ’)(x)
115 x = Convolution2D (64 , (3 , 3) , strides =(1 , 1) , activation =’relu ’)(x)
116 x = Convolution2D (64 , (3 , 3) , strides =(1 , 1) , activation =’relu ’)(x)
117 x = Flatten ()(x)
118 x = Dense (100 , activation ="relu")(x)
119 x = Dense (50 , activation ="relu")(x)
120 x = Dense (10 , activation ="relu")(x)
121
122 loss = {}
123 outputs = []
124 for i in range (NUM_COORDS_TO_PREDICT):
125 name_x = " coord_x_out_ " + str(i)
126 name_y = " coord_y_out_ " + str(i)
127 coord_x_out = Dense (1 , name=name_x , activation =" linear ")(x)
128 coord_y_out = Dense (1 , name=name_y , activation =" linear ")(x)
129 loss[name_x] = " mean_squared_error "
130 loss[name_y] = " mean_squared_error "

93

131 outputs . append (coord_x_out)
132 outputs . append (coord_y_out)
133
134 model = Model (inputs =[img_in], outputs = outputs)
135 model . compile (optimizer ="adam" , loss=loss)
136 return model
137
138
139 def train_model (model , args , X_train , X_valid , y_train , y_valid):
140 checkpoint = ModelCheckpoint (get_config_dir () + ’/ models /model -{ epoch :03d}. h5 ’,
141 monitor =’val_loss ’,
142 verbose =0,
143 save_best_only =args. save_best_only ,
144 mode=’auto ’)
145
146 tensorboard = TensorBoard (log_dir = get_config_dir () + "/logs/ tensorboard /{}_{}".

↪→ format (args.log_label , time ()))
147 csvLogger = CSVLogger (get_config_dir () + "/logs/csv /{}_{}. csv". format (args.

↪→ log_label , time ()) , separator =’,’ , append = False)
148
149 model . compile (loss=’mean_squared_error ’ , optimizer =Adam(lr=args. learning_rate))
150
151 cache_capacity = min(int(args. image_memory_size / (IMAGE_HEIGHT * IMAGE_WIDTH *

↪→ IMAGE_CHANNELS * 8)) , len(X_train) + len(X_valid))
152 print (" Cache capacity : {} images ". format (cache_capacity))
153 image_cache = ImageCache (cache_capacity)
154 print (" Buffering images ...")
155 image_cache . load_images (np. append (X_train , X_valid , axis =0))
156 print (" Completed !")
157
158 train_sequence = BatchSequence (args.data_dir , X_train , y_train , args. batch_size ,

↪→ True , image_cache)
159 valid_sequence = BatchSequence (args.data_dir , X_valid , y_valid , args. batch_size ,

↪→ False , image_cache)
160
161 model . fit_generator (train_sequence ,
162 None ,
163 args.nb_epoch ,
164 max_queue_size =args. max_queue_size ,
165 validation_data = valid_sequence ,
166 validation_steps =None ,
167 callbacks =[checkpoint , tensorboard , csvLogger],
168 verbose =1,
169 workers =args.workers ,
170 shuffle = False)
171
172 def s2b(s):
173 s = s. lower ()
174 return s == ’true ’ or s == ’yes ’ or s == ’y’ or s == ’1’
175
176
177 def main ():
178 default_training_dir = get_config_dir () + "/ trainingData "
179 parser = argparse . ArgumentParser (description =’Behavioral Cloning Training Program

↪→ ’)
180 parser . add_argument (’training_config ’ , help=’training config file ’ , type=str)
181 parser . add_argument (’-d’ , help=’data directory ’ , dest=’data_dir ’ ,

↪→ type=str , default = default_training_dir)
182 parser . add_argument (’-t’ , help=’test size fraction ’ , dest=’test_size ’ ,

↪→ type=float , default =0.2)
183 parser . add_argument (’-k’ , help=’drop out probability ’ , dest=’keep_prob ’ ,

↪→ type=float , default =0.5)
184 parser . add_argument (’-n’ , help=’number of epochs ’ , dest=’nb_epoch ’ ,

↪→ type=int , default =50)
185 parser . add_argument (’-b’ , help=’batch size ’ , dest=’batch_size ’ ,

↪→ type=int , default =40)

94

186 parser . add_argument (’-o’ , help=’save best models only ’ , dest=’save_best_only ’ ,
↪→ type=s2b , default =’false ’)

187 parser . add_argument (’-l’ , help=’learning rate ’ , dest=’learning_rate ’ ,
↪→ type=float , default =1.0e -4)

188 parser . add_argument (’-x’ , help=’tensorboard log label ’ , dest=’log_label ’ ,
↪→ type=str , default =’log ’)

189 parser . add_argument (’-w’ , help=’number of workers ’ , dest=’workers ’ ,
↪→ type=int , default =8)

190 parser . add_argument (’-q’ , help=’max queue size ’ , dest=’max_queue_size ’ ,
↪→ type=int , default =1)

191 parser . add_argument (’-m’ , help=’image memory size ’ , dest=’image_memory_size ’
↪→ , type=int , default =12 e9)

192 args = parser . parse_args ()
193
194 print (’-’ * 30)
195 print (’Parameters ’)
196 print (’-’ * 30)
197 for key , value in vars(args). items ():
198 print (’{: <20} := {} ’. format (key , value))
199 print (’-’ * 30)
200
201 print (" Loading data ...")
202 data = load_data (args)
203 print (" Completed !")
204
205 model = build_model_nvidia (args)
206 train_model (model , args , * data)
207
208
209 if __name__ == ’__main__ ’:
210 main ()

utils.py
1 import cv2 , os
2 import numpy as np
3 import numexpr as ne
4 import matplotlib . image as mpimg
5 from os.path import expanduser
6 import json
7 import keras
8 from threading import Thread , Condition , Lock
9 import sys

10 is_py2 = sys. version [0] == ’2’
11 if is_py2 :
12 from Queue import Queue , Empty
13 else :
14 from queue import Queue , Empty
15 from parameters import *
16
17
18 def get_config_dir ():
19 if os.name == "nt":
20 return "G:/ car"
21 home = expanduser ("~")
22 return home + "/. car"
23
24
25 def open_config ():
26 f = open(get_config_dir () + "/ config .json" , "r")
27 return json.load(f)
28
29
30 def load_image_from_path (path):
31 return cv2. imread (path)

95

32
33
34 def load_image (data_dir , image_file):
35 return load_image_from_path (os.path.join(data_dir , image_file . strip ()))
36
37
38 def crop(image):
39 return image [CROP_TOP : , : , :]
40
41
42 def resize (image):
43 return cv2. resize (image , (IMAGE_WIDTH , IMAGE_HEIGHT) , cv2. INTER_AREA)
44
45
46 def normalize (image):
47 return ne. evaluate (" image / 127.5 - 1.0 ")
48
49
50 def convert (image):
51 image = image . astype (np. uint8)
52 return cv2. cvtColor (image , cv2. COLOR_BGR2YUV)
53
54
55 def bgr2yuv (image):
56 return cv2. cvtColor (image , cv2. COLOR_BGR2YUV)
57
58
59 def random_flip (image , coords):
60 if np. random .rand () < 0.5:
61 image = cv2.flip(image , 1)
62 for i , coord in enumerate (coords):
63 coords [i][0] = - coord [0]
64 return image , coords
65
66
67 def apply_contrast (image , ratio):
68 image = image . astype (np. float64)
69 image = np. minimum (image * ratio , 255)
70 return image . astype (np. uint8)
71
72
73 def apply_brightness (image , ratio):
74 image = image . astype (np. uint8)
75 hsv = cv2. cvtColor (image , cv2. COLOR_BGR2HSV)
76 hsv = hsv. astype (np. float64)
77 hsv [: ,: ,2] = np. minimum (hsv [: ,: ,2] * ratio , 255)
78 hsv = hsv. astype (np. uint8)
79 return cv2. cvtColor (hsv , cv2. COLOR_HSV2BGR)
80
81
82 def random_brightness (image):
83 # HSV (Hue , Saturation , Value) is also called HSB (’B ’ for Brightness).
84 ratio = np. random . uniform (0.5 , 2.0 , 1) [0]
85 return apply_brightness (image , ratio)
86
87
88 def augument (image , coords):
89 image , coords = random_flip (image , coords)
90 image = random_brightness (image)
91 return image , coords
92
93
94 def preprocess_image (image , do_crop =True , do_resize =True , do_convert =True ,

↪→ do_normalize =True):
95 if do_crop :
96 image = crop(image)

96

97 if do_resize :
98 image = resize (image)
99 if do_convert :

100 image = convert (image)
101 if do_normalize :
102 image = normalize (image)
103 return image
104
105
106 def preprocess_angle (angle):
107 return angle / 30
108
109
110 def preprocess_throttle (throttle):
111 return throttle
112
113
114 def postprocess_angle (angle):
115 return angle * 30
116
117
118 def postprocess_throttle (throttle):
119 return throttle
120
121
122 class BatchSequence (keras . utils . Sequence):
123 def __init__ (self , data_dir , X , y , batch_size , is_training , image_cache):
124 self. data_dir = data_dir
125 self.X = X
126 self.y = y
127 self. batch_size = batch_size
128 self. is_training = is_training
129 self. sequence = self. next_sequence ()
130 self. image_cache = image_cache
131
132 def __len__ (self):
133 return int(np. floor (len(self.X) / float (self. batch_size)))
134
135 def __getitem__ (self , idx):
136 inputs = np. empty ([self. batch_size , IMAGE_HEIGHT , IMAGE_WIDTH , IMAGE_CHANNELS

↪→])
137 outputs = [np. empty (self. batch_size) for i in range (2 * NUM_COORDS_TO_PREDICT

↪→)]
138
139 for batch_idx in range (self. batch_size):
140 seq_idx = (idx * self. batch_size + batch_idx) % len(self. sequence)
141 sample_idx = self. sequence [seq_idx]
142 image_path = self.X[sample_idx]
143 image = self. image_cache . get_image (image_path)
144 coords = self.y[sample_idx]. copy ()
145
146 # augumentation
147 if self. is_training and np. random .rand () < 0.6:
148 image , coords = augument (image , coords)
149
150 inputs [batch_idx] = normalize (convert (image))
151 for i , coord in enumerate (coords):
152 outputs [2 * i][batch_idx] = coord [0]
153 outputs [2 * i + 1][batch_idx] = coord [1]
154
155 return inputs , outputs
156
157 def on_epoch_end (self):
158 self. sequence = self. next_sequence ()
159
160 def next_sequence (self):

97

161 return np. random . permutation (len(self.X))
162
163
164 class ImageCache :
165 def __init__ (self , capacity):
166 self. images = np. empty ([capacity , IMAGE_HEIGHT , IMAGE_WIDTH , IMAGE_CHANNELS])
167 self. path_to_idx = {}
168
169 def load_images (self , image_paths):
170 for i in range (min(len(self. images) , len(image_paths))):
171 image_path = image_paths [i]
172 self. images [i] = self. load_image (image_path)
173 self. path_to_idx [image_path] = i
174
175 def load_image (self , image_path):
176 image = load_image_from_path (image_path)
177 return preprocess_image (image , do_convert =False , do_normalize = False)
178
179 def get_image (self , image_path):
180 if image_path in self. path_to_idx :
181 return self. images [self. path_to_idx [image_path]]
182 return self. load_image (image_path)

C.2. STM32

C.2.1. C Source Code

Note that the following code was originally delivered by Assystem GmbH and includes
modifications from us.

mavlink.h
1
2 # ifndef MAVLINK_H_
3 # define MAVLINK_H_
4
5 /* ************ Includes

↪→ ** */
6
7 # include < stdlib .h>
8 # include < stdbool .h>
9 # include "per/irq.h"

10 # include "sys/util/io.h"
11 # include "per/uart.h"
12 # include "sys/sigp/sigp.h"
13 # include "sys/ systime / systime .h"
14 # include " protocol / velox / mavlink .h"
15 # include "sys/ errorhandler / errorHandler .h"
16
17 /* ************ Public typedefs

↪→ *** */
18
19 /* ************ Macros and constants

↪→ ** */
20
21 # define MAVLINK_BAUDRATE 115200
22 # define MAX_BUFFER_LEN 1000
23 /* ************ Public function prototypes

↪→ ** */
24 /**

98

25 * @brief The init function needs to be called during the initialization of the
↪→ system .

26 * It sets all local variables to their initial values .
27 */
28 int8_t mavlink_init (void);
29
30 /**
31 * @brief read messages from uart buffer and interpret them
32 */
33 void mavlink_getMessages (void);
34
35 /**
36 * @brief pack and send all messages that are marked as active
37 */
38 void mavlink_sendMessages (void);
39
40 /**
41 * @brief activate outgoing messages that are linked to the specified state
42 */
43 void mavlink_activateStateMessages (uint8_t state);
44
45 /**
46 * @brief deactivate outgoing messages that are linked to the specified state
47 */
48 void mavlink_deactivateStateMessages (uint8_t state);
49
50 # endif /* MAVLINK_H_ */

mavlink.c

1 /* ***
↪→

2 * Unit in charge :
3 * @file odom .c
4 * @author mbrieske
5 * $Date :: 2017 -05 -22 17:17:17 # $
6 *
7 * --
8 * SVN information of last commit :
9 * $Rev :: 1538 $

10 * $Author :: mbrieske $
11 *
12 * --
13 *
14 * @brief MAVLink see mavlink .h
15 *
16 ***

↪→ */
17
18 /* ************ Includes

↪→ ** */
19 # include "../ mavlink .h"
20 # include "per/eict.h"
21 # include "app/ leddebug .h"
22
23 /* ************ Private typedefs

↪→ ** */
24
25 # define NUM_MSGS (sizeof mavlinkMessageInfo / sizeof mavlinkMessageInfo [0])
26
27 typedef struct msgmeta {
28 uint8_t msgid ; /* mavlink message id */
29 bool active ; /* will send message if set to TRUE */
30 uint8_t period ; /* signal will be send every [period] * 10 ms */

99

31 bool customRequest ; /* true if message was requested via mavlink message
↪→ */

32 } msgmeta_t ;
33
34 /* ************ Private signals and variables

↪→ *** */
35
36 static const mavlink_message_info_t mavlinkMessageInfo [] = MAVLINK_MESSAGE_INFO ;
37 mavlink_system_t mavlinkSystem ;
38 msgmeta_t msgMeta [NUM_MSGS];
39 static bool prevTimeout ;
40
41 static uint32_t lastTimestamp ;
42
43 /* UART */
44 uart_t uart;
45 static uint8_t byteBuffer ;
46 static int8_t receiveBuffer [MAX_BUFFER_LEN], transmitBuffer [MAX_BUFFER_LEN];
47 static uint32_t receiveBufferSize = MAX_BUFFER_LEN , transmitBufferSize =

↪→ MAX_BUFFER_LEN ;
48 static uint32_t receiveBufferTimestamp [MAX_BUFFER_LEN], transmitBufferTimestamp [

↪→ MAX_BUFFER_LEN];
49
50 static uint16_t transmitcounter ;
51
52 /* Signals */
53 uint32_t * pSyncOffset_mavlink ;
54 heartbeat_t * pHeartbeat_mavlink ;
55 carcontrol_t * pCarControl_mavlink ;
56 trajectory_t * pTrajectory_mavlink ;
57 uint8_t * pState_mavlink ;
58 uint8_t * pRequestedState_mavlink ;
59 uint64_t * pErrorRegister_mavlink ;
60
61 uint32_t * pOdomTimestamp_mavlink ;
62 uint32_t * pStAngTimestamp_mavlink ;
63 float32_t * pVehSpdOdom_mavlink ;
64 float32_t * pVehXDistOdom_mavlink ;
65 float32_t * pVehYDistOdom_mavlink ;
66 float32_t * pVehYawAngOdom_mavlink ;
67 float32_t * pStAngAct_mavlink ;
68
69 /* ************ Private functions

↪→ *** */
70
71 bool configureOutgoingMessage (uint8_t msgid , bool active , uint8_t period , bool

↪→ customRequest)
72 {
73 if (msgid == MAVLINK_MSG_ID_HEARTBEAT && customRequest) return false ; // do not

↪→ allow heartbeat to be reconfigured by custom requests
74 for (uint8_t i = 0; i < NUM_MSGS ; i++)
75 {
76 if (msgMeta [i]. msgid == msgid)
77 {
78 if (msgMeta [i]. customRequest == false || customRequest == true)
79 {
80 msgMeta [i]. active = active ;
81 msgMeta [i]. period = period ;
82 msgMeta [i]. customRequest = customRequest ;
83 }
84 return true ;
85 }
86 }
87 return false ;
88 }
89

100

90 void configureStateMessages (uint8_t state , bool active)
91 {
92 switch (state)
93 {
94 case SYSTEM_STATE_INITIALIZING :
95 configureOutgoingMessage (MAVLINK_MSG_ID_CMD_REQUEST_CLOCKSYNC , active , 50 , false)

↪→ ;
96 break ;
97 case SYSTEM_STATE_IDLE :
98 configureOutgoingMessage (MAVLINK_MSG_ID_CMD_REQUEST_CLOCKSYNC , active , 10 , false)

↪→ ;
99 break ;

100 case SYSTEM_STATE_RUNNING_EXT :
101 configureOutgoingMessage (MAVLINK_MSG_ID_CMD_REQUEST_CLOCKSYNC , active , 10 , false)

↪→ ;
102 configureOutgoingMessage (MAVLINK_MSG_ID_ODOMETRY , active , 1 , false);
103 break ;
104 case SYSTEM_STATE_RUNNING_RC :
105 configureOutgoingMessage (MAVLINK_MSG_ID_CMD_REQUEST_CLOCKSYNC , active , 10 , false)

↪→ ;
106 break ;
107 case SYSTEM_STATE_EMERGENCY :
108 configureOutgoingMessage (MAVLINK_MSG_ID_ERROR , active , 10 , false);
109 break ;
110 default :
111 io_printf (" MAVLINK : switched to unknown state ");
112 }
113 }
114
115 bool sendMessage (uint8_t msgid)
116 {
117 mavlink_message_t msg;
118 uint8_t buf[MAVLINK_MAX_PACKET_LEN];
119
120 uint16_t ticksRL ;
121 uint16_t ticksRR ;
122 if (msgid == MAVLINK_MSG_ID_ODOMETRY)
123 eict_getCounter2 (& ticksRL , & ticksRR);
124
125 uint32_t now;
126 uint32_t deltaTime ;
127
128 irq_disable ();
129 uint32_t syncOffset = * pSyncOffset_mavlink ;
130 switch (msgid)
131 {
132 case MAVLINK_MSG_ID_HEARTBEAT :
133 mavlink_msg_heartbeat_pack (mavlinkSystem .sysid , mavlinkSystem .compid , & msg , *

↪→ pState_mavlink);
134 break ;
135 case MAVLINK_MSG_ID_ERROR :
136 mavlink_msg_error_pack (mavlinkSystem .sysid , mavlinkSystem .compid , & msg , *

↪→ pErrorRegister_mavlink);
137 break ;
138 case MAVLINK_MSG_ID_ODOMETRY :
139 // use this for real driving :
140 // mavlink_msg_odometry_pack (mavlinkSystem .sysid , mavlinkSystem .compid , & msg , *

↪→ pOdomTimestamp_mavlink - syncOffset , * pStAngTimestamp_mavlink - syncOffset
↪→ , * pVehSpdOdom_mavlink , * pVehXDistOdom_mavlink , * pVehYDistOdom_mavlink , *
↪→ pVehYawAngOdom_mavlink , * pStAngAct_mavlink);

141
142 // use this for calibration :
143 now = systime_getSysTime ();
144 deltaTime = now - lastTimestamp ;
145 lastTimestamp = now;

101

146 mavlink_msg_odometry_pack (mavlinkSystem .sysid , mavlinkSystem .compid , & msg , *
↪→ pOdomTimestamp_mavlink - syncOffset , deltaTime , * pVehSpdOdom_mavlink , *
↪→ pVehXDistOdom_mavlink , * pVehYDistOdom_mavlink , (float32_t) ticksRL , (
↪→ float32_t) ticksRR);

147
148 break ;
149 case MAVLINK_MSG_ID_CMD_REQUEST_CLOCKSYNC :
150 mavlink_msg_cmd_request_clocksync_pack (mavlinkSystem .sysid , mavlinkSystem .compid

↪→ , & msg , 0);
151 break ;
152 default :
153 io_printf (" MAVLink : not implemented or unknown msgid \n");
154 irq_enable ();
155 return false ;
156 }
157 irq_enable ();
158
159 uint16_t len = mavlink_msg_to_send_buffer (buf , & msg);
160 if (uart. sendring .size - uart. sendring . count > len) {
161 uart_writeString (& uart , (int8_t *) buf , len);
162 }
163 else {
164 io_printf (" MAVLink : UART TX buffer full\n");
165 return false ;
166 }
167
168 return true ;
169 }
170
171 void handleMessage (mavlink_message_t * msg)
172 {
173 uint32_t recTimestamp = systime_getSysTime ();
174 irq_disable ();
175 uint32_t syncOffset = * pSyncOffset_mavlink ;
176 switch (msg -> msgid)
177 {
178 case MAVLINK_MSG_ID_HEARTBEAT :
179 pHeartbeat_mavlink -> lastReceiveTimestamp = recTimestamp ;
180 pHeartbeat_mavlink -> mavlink_version = mavlink_msg_heartbeat_get_mavlink_version (

↪→ msg);
181 pHeartbeat_mavlink -> state = mavlink_msg_heartbeat_get_state (msg);
182 break ;
183 case MAVLINK_MSG_ID_CARCONTROL :
184 pCarControl_mavlink -> lastReceiveTimestamp = recTimestamp ;
185 pCarControl_mavlink -> vehSpdTgtExt = mavlink_msg_carcontrol_get_vehspd (msg);
186 pCarControl_mavlink -> stAngTgtExt = mavlink_msg_carcontrol_get_stang (msg) - 4;
187 break ;
188 case MAVLINK_MSG_ID_TRAJECTORY :
189 pTrajectory_mavlink -> lastReceiveTimestamp = recTimestamp ;
190 pTrajectory_mavlink -> timestamp = mavlink_msg_trajectory_get_timestamp (msg) +

↪→ syncOffset ;
191 mavlink_msg_trajectory_get_x (msg , pTrajectory_mavlink ->x);
192 mavlink_msg_trajectory_get_y (msg , pTrajectory_mavlink ->y);
193 mavlink_msg_trajectory_get_theta (msg , pTrajectory_mavlink -> theta);
194 mavlink_msg_trajectory_get_kappa (msg , pTrajectory_mavlink -> kappa);
195 mavlink_msg_trajectory_get_v (msg , pTrajectory_mavlink ->v);
196 break ;
197 case MAVLINK_MSG_ID_CMD_REQUEST_MSG : ; /* semicolon is needed here ... */
198 uint8_t msgid = mavlink_msg_cmd_request_msg_get_msgid (msg);
199 bool_t active = (bool_t) mavlink_msg_cmd_request_msg_get_active (msg);
200 uint8_t period = mavlink_msg_cmd_request_msg_get_period (msg);
201 configureOutgoingMessage (msgid , active , period , true);
202 break ;
203 case MAVLINK_MSG_ID_CMD_REQUEST_STATECHANGE :
204 * pRequestedState_mavlink = mavlink_msg_cmd_request_statechange_get_state (msg);
205 break ;

102

206 default :
207 io_printf (" MAVLINK : Don ’t know how to handle message id %u\n" , msg -> msgid);
208 }
209 irq_enable ();
210 }
211
212 /* ************ Public functions

↪→ ** */
213
214 int8_t mavlink_init (void)
215 {
216 io_printf (" MAVLINK : initializing \n");
217 uart. baudrate = MAVLINK_BAUDRATE ;
218 uart. channel = UART_CH3 ;
219 if (uart_init (& uart , receiveBuffer , receiveBufferSize , transmitBuffer ,

↪→ transmitBufferSize , transmitBufferTimestamp , receiveBufferTimestamp)) {
220 return -1;
221 }
222
223 mavlinkSystem . sysid = 0;
224 mavlinkSystem . compid = MAV_COMP_ID_STM ;
225
226 for (uint8_t i = 0; i < NUM_MSGS ; i++)
227 {
228 msgMeta [i]. msgid = mavlinkMessageInfo [i]. msgid ;
229 msgMeta [i]. active = false ;
230 msgMeta [i]. customRequest = false ;
231 }
232
233 /* heartbeat is always active , might as well activate it here (and never deactivate

↪→) */
234 configureOutgoingMessage (MAVLINK_MSG_ID_HEARTBEAT , true , 10 , false);
235
236 prevTimeout = true ;
237
238 return 0;
239 }
240
241 void mavlink_getMessages (void)
242 {
243 mavlink_message_t msg;
244 mavlink_status_t status ;
245 uint8_t chan = 0;
246
247 while (uart_readByte (& uart , (int8_t *) & byteBuffer))
248 {
249 if (mavlink_parse_char (chan , byteBuffer , & msg , & status))
250 {
251 handleMessage (& msg);
252 }
253 }
254
255 bool timeout = (systime_getSysTime () - pHeartbeat_mavlink -> lastReceiveTimestamp)

↪→ > 2.5 e5 ; // heartbeat timeout after 250 ms
256 if (timeout && ! prevTimeout)
257 {
258 errorHandler_setError (ERROR_MAVLINK_Timeout);
259 prevTimeout = true ;
260 }
261 else if (! timeout && prevTimeout) {
262 errorHandler_clearError (ERROR_MAVLINK_Timeout);
263 prevTimeout = false ;
264 }
265 }
266
267 void mavlink_sendMessages (void)

103

268 {
269 transmitcounter ++;
270 for (uint8_t i = 0; i < NUM_MSGS ; i++)
271 {
272 if (msgMeta [i]. active && (transmitcounter % msgMeta [i]. period) == 0)
273 {
274 sendMessage (msgMeta [i]. msgid);
275 }
276 }
277 }
278
279 void mavlink_activateStateMessages (uint8_t state)
280 {
281 configureStateMessages (state , true);
282 }
283
284 void mavlink_deactivateStateMessages (uint8_t state)
285 {
286 configureStateMessages (state , false);
287 }

stangproc.h
1 /* * ***

↪→
2 * Unit in charge :
3 * @file stangproc .h
4 * @author hinze
5 * $Date :: 2017 -09 -06 12:43:27 # $
6 *
7 * --
8 * SVN information of last commit :
9 * $Rev :: 2158 $

10 * $Author :: mbrieske $
11 *
12 * --
13 *
14 * @brief The torque processing transforms the valid torque target value into the

↪→ expected format and range of the actuating module .
15 *
16 ***

↪→ */
17
18 # ifndef STANGPROC_H_
19 # define STANGPROC_H_
20
21 /* ************ Includes

↪→ ** */
22 # include "brd/ startup / stm32f4xx .h"
23 # include "dev/ servo / servo .h"
24 # include "per/irq.h"
25 # include "sys/ systime / systime .h"
26
27 /* ************ Public typedefs

↪→ *** */
28
29 /* ************ Macros and constants

↪→ ** */
30
31 /* ************ Public function prototypes

↪→ ** */
32 /**
33 * @brief Initializes the steering angle processing
34 *
35 * @param [in , out] void

104

36 *
37 * @return 0
38 */
39 int8_t stangproc_init (void);
40
41 /**
42 * @brief This function process the steering angle provided by application
43 * steering angle target selector in a angle that can be read by the servo .
44 * The process consists in an linear transformation
45 *
46 * @param [in , out] void
47 *
48 * @return void
49 */
50 void stangproc_step (void);
51
52 # endif /* STANGPROC_H_ */

stangproc.c
1 /* ***

↪→
2 * Unit in charge :
3 * @file stangproc .c
4 * @author hinze
5 * $Date :: 2017 -09 -06 12:43:27 # $
6 *
7 * --
8 * SVN information of last commit :
9 * $Rev :: 2158 $

10 * $Author :: neumerkel $
11 *
12 * --
13 *
14 * @brief The steering processing consist in the linear transformation of the

↪→ steering angle
15 * in an angle which can be read by the servo device .
16 *
17 *
18 ***

↪→ */
19
20 /* ************ Includes

↪→ ** */
21 # include "../ stangproc .h"
22 # include "sys/util/io.h"
23
24 /* ************ Private typedefs

↪→ ** */
25
26 /* ************ Macros and constants

↪→ ** */
27
28 /* ************ Global variables

↪→ ** */
29 /* Signal pointers for input signals */
30 float32_t * pStAngTgtSel_stangproc ;
31
32 /* Signal pointers for output signals */
33 uint32_t * pStAngTimestamp_stangproc ;
34 float32_t * pStAngTgt_stangproc ;
35 float32_t * pStAngAct_stangproc ;
36 float32_t * pSrvAngAct_stangproc ; /* *< signal from servo */
37
38 /* Parameter pointers */

105

39 float32_t * pStAngMax_stangproc ;
40 float32_t * pStAngMin_stangproc ;
41 float32_t * pStAngTgtFailSafe_stangproc ;
42 float32_t * pMinAbsAngSrv1_stangproc ;
43 float32_t * pMaxAbsAngSrv1_stangproc ;
44
45 /* ************ Private static variables

↪→ ** */
46 static float32_t stAngMax = 0;
47 static float32_t stAngMin = 0;
48 static float32_t stAngTgtFailSafe = 0;
49 static float32_t stAngTgt = 0;
50 static float32_t srvAngMax = 0;
51 static float32_t srvAngMin = 0;
52
53 /* ************ Private function prototypes

↪→ *** */
54 static void updateParameters (void);
55 static float32_t transformAng (float32_t inAng);
56 static float32_t transformSvrAngToStAng (float32_t servoAngAct);
57
58 /* ************ Public functions

↪→ ** */
59 int8_t stangproc_init (void)
60 {
61 stAngMax = 0;
62 stAngMin = 0;
63 stAngTgtFailSafe = 0;
64 stAngTgt = 0;
65 srvAngMax = 0;
66 srvAngMin = 0;
67
68 /* fetch updated parameters */
69 updateParameters ();
70 /* set output signals to init values */
71 * pStAngTimestamp_stangproc = 0;
72 * pStAngTgt_stangproc = stAngTgtFailSafe ;
73
74 return 0;
75 }
76
77 void stangproc_step (void)
78 {
79 float32_t sigSrvAngAct = 0.0;
80 /* fetch updated parameters */
81 irq_disable ();
82 updateParameters ();
83 sigSrvAngAct = * pSrvAngAct_stangproc ;
84 /* store target value as intermediate taret value */
85 stAngTgt = * pStAngTgtSel_stangproc ;
86 /* transform steer angle target value into servo steer angle target value */
87 * pStAngTgt_stangproc = transformAng (stAngTgt);
88 /* transform the actual servo angle value into the actual steer angle */
89 * pStAngAct_stangproc = transformSvrAngToStAng (sigSrvAngAct);
90 /* publish timestamp for steering angle */
91 * pStAngTimestamp_stangproc = systime_getSysTime ();
92 irq_enable ();
93
94 /* call servo device driver to update to the new target value */
95 # ifndef USE_RX24F
96 servo_updateAngleSrv1 ();
97 # endif
98 }
99

100 /* ************ Private functions
↪→ *** */

106

101 static void updateParameters (void)
102 {
103 /* update all parameters to current values from parameter system */
104 stAngMax = * pStAngMax_stangproc ;
105 stAngMin = * pStAngMin_stangproc ;
106 srvAngMax = * pMaxAbsAngSrv1_stangproc ;
107 srvAngMin = * pMinAbsAngSrv1_stangproc ;
108 stAngTgtFailSafe = transformAng (* pStAngTgtFailSafe_stangproc);
109 }
110
111 static float32_t transformAng (float32_t inAng)
112 {
113 float32_t ret = 0;
114 float32_t m = 0;
115
116 /* linear transformation of steer angle input into servo steer angle */
117 m = (srvAngMax - srvAngMin) / (stAngMax - stAngMin);
118 ret = m * (inAng - stAngMin) + srvAngMin ;
119
120 return ret;
121 }
122
123 /* transform the actual servo angle value into the actual steer angle */
124 static float32_t transformSvrAngToStAng (float32_t servoAngAct)
125 {
126 float32_t retStAngAct = 0.0;
127 float32_t res = 0.0;
128
129 /* linear transformation of servo steer angle input into steer angle */
130 res = (servoAngAct - srvAngMin) / (srvAngMax - srvAngMin);
131 retStAngAct = res * (stAngMax - stAngMin) + stAngMin ;
132
133 return retStAngAct ;
134 }

vehspdctrl.h
1
2 /* * ***

↪→
3 * Unit in charge :
4 * @file vehspdctrl .h
5 * @author Brieske
6 * $Date :: 2017 -09 -12 08:12:11 # $
7 *
8 * --
9 * SVN information of last commit :

10 * $Rev :: 2022 $
11 * $Author :: Brieske $
12 *
13 * --
14 *
15 * @brief TODO
16 *
17 ***

↪→ */
18
19 # ifndef VEHSPDCTRL_H_
20 # define VEHSPDCTRL_H_
21
22 /* ************ Includes

↪→ ** */
23 # include "brd/ startup / stm32f4xx .h"
24 # include "per/irq.h"
25 # include "sys/algo/pid.h"

107

26 # include "sys/algo/pt1.h"
27 /* ************ Public typedefs

↪→ *** */
28
29 /* ************ Macros and constants

↪→ ** */
30
31 /* ************ Public function prototypes

↪→ ** */
32 int8_t vehspdctrl_init (void);
33 /**
34 * @brief Initialize the parameters and signals used by the application vehspdctrl
35 *
36 * @return int8_t success
37 **/
38 void vehspdctrl_step (void);
39 /**
40 * @brief TODO
41 */
42
43 # endif /* VEHSPDPROC_H_ */

vehspdctrl.c

1 /* * ***
↪→

2 * Unit in charge :
3 * @file vehspdctrl .c
4 * @author Brieske
5 * $Date :: 2017 -09 -12 08:12:11 # $
6 *
7 * --
8 * SVN information of last commit :
9 * $Rev :: 2022 $

10 * $Author :: Brieske $
11 *
12 * --
13 *
14 * @brief TODO
15 *
16 ***

↪→ */
17
18 /* ************ Includes

↪→ ** */
19 # include "../ vehspdctrl .h"
20 # include "app/stm/stm.h"
21 # include "dev/ rcrec / rcrec .h"
22 # include "dev/ servo / servo .h"
23 # include "app/ leddebug .h"
24
25 /* ************ Global variables

↪→ ** */
26 /* input signals */
27 float * pVehSpdOdom_vehspdctrl ;
28 uint8_t * pState_vehspdctrl ;
29 carcontrol_t * pCarControl_vehspdctrl ;
30 // float * pVehSpdTgtTraj_vehspdctrl ;
31 uint16_t * pRcChannel1_vehspdctrl ;
32
33 /* output signals */
34
35 /* parameters */
36

108

37 /* ************ Private typedefs
↪→ ** */

38
39 /* ************ Macros and constants

↪→ ** */
40 # define TDELTA 0.02
41
42 # define PID_K_P 0.005
43 // No I value required since we do not need to correct a constant error .
44 # define PID_K_I 0
45 // D value to avoid overshoot .
46 # define PID_K_D 0.001
47
48 # define PID_GAIN 1
49
50 # define PT1_T 0.08
51 # define PT1_T_OPT (1. / (PT1_T / TDELTA) + 1)
52
53 # define MOT_MAXVAL 10.
54 // # define U_DEADBAND_POSITIVE 0.0583
55 // # define U_DEADBAND_NEGATIVE -0.075
56 # define U_DEADBAND_POSITIVE 0.02
57 # define U_DEADBAND_NEGATIVE - U_DEADBAND_POSITIVE * 4
58
59 # define MOTOR_LIMIT 0.4f
60 # define MOTOR_FULLSTOP -10
61 # define MOTOR_AFTER_FULLSTOP 0
62
63 # define MAX_SPEED 3.0f
64 # define FLOAT_TOLERANCE 0.0001 f
65
66 # define MIN(a , b) (a < b ? a : b)
67 # define MAX(a , b) (a > b ? a : b)
68 # define ABS(x) (x < 0 ? -x : x)
69
70 /* ************ Private static variables

↪→ ** */
71 static pidCtrl_t pid;
72 static pt1_t pt1;
73
74 static float vehSpdOdom ;
75 static uint8_t state ;
76
77 static float motTrqTgtSrv ;
78
79 // tells whether there was a fullstop on the last step
80 static bool lastFullstop ;
81
82 /* ************ Private function prototypes

↪→ *** */
83
84 static float spdCtrlAssystem (float w);
85 static void spdCtrl (float destSpd);
86 static void setThrottle (float throttle);
87
88 /* ************ Public functions

↪→ ** */
89 int8_t vehspdctrl_init (void)
90 {
91 pCarControl_vehspdctrl -> vehSpdTgtExt = 0.0 f;
92
93 pt1.K = 1;
94 pt1. T_opt = PT1_T_OPT ;
95 pt1. y_old = 0;
96
97 pid.kp = PID_K_P ;

109

98 pid.ki = PID_K_I ;
99 pid.kd = PID_K_D ;

100
101 // pid .ki = 0. F;
102 // pid .kd = 0. F;
103
104 pid.gain = PID_GAIN ;
105 pid.ta = TDELTA ;
106 pid.min = - MOT_MAXVAL ;
107 pid.max = MOT_MAXVAL ;
108
109 pid_initialize (& pid);
110
111 return 0;
112 }
113
114 void vehspdctrl_step (void)
115 {
116 irq_disable ();
117 state = * pState_vehspdctrl ;
118 irq_enable ();
119
120 switch (state) {
121 case SYSTEM_STATE_INITIALIZING :
122 // motor is disabled , nothing to do here
123 return ;
124 case SYSTEM_STATE_IDLE :
125 motTrqTgtSrv = 0;
126 lastFullstop = false ;
127 case SYSTEM_STATE_EMERGENCY :
128 spdCtrl (0.F);
129 break ;
130 case SYSTEM_STATE_RUNNING_RC :
131 irq_disable ();
132 float rcvalue = (float) * pRcChannel1_vehspdctrl ;
133 irq_enable ();
134 // if (rcvalue < 1400) {
135 // motTrqTgtSrv = 0;
136 // }
137 // else {
138 motTrqTgtSrv = (rcvalue - 1500.0F) / (float) (MAX_PERIOD_CHANNEL -

↪→ MIN_PERIOD_CHANNEL);
139 motTrqTgtSrv *= 0.8;
140 // motTrqTgtSrv *= 3;
141 // motTrqTgtSrv = spdCtrl (motTrqTgtSrv);
142 // }
143 break ;
144 case SYSTEM_STATE_RUNNING_EXT :
145 irq_disable ();
146 float spdTgt = pCarControl_vehspdctrl -> vehSpdTgtExt ;
147 irq_enable ();
148
149 // debugging
150 if (spdTgt != 0.0 f)
151 debugLedOn ();
152 else
153 debugLedOff ();
154
155 spdCtrl (spdTgt);
156 break ;
157 // case SYSTEM_STATE_RUNNING_TRAJ :
158 // TODO system state not implemented yet
159 // irq_disable ();
160 // float spdTgt = * pVehSpdTgtTraj_vehspdctrl ;
161 // irq_enable ();
162 // motTrqTgtSrv = spdCtrl (spdTgt);

110

163 // break
164 default :
165 // cannot go here
166 break ;
167 }
168
169 servo_updateMotorTrq (motTrqTgtSrv);
170 }
171
172 /* ************ Private functions

↪→ *** */
173
174 static float spdCtrlAssystem (float w)
175 {
176 float u = 0; // manipulated value
177 float u_f = 0; // feed forward value
178 float y = 0; // controlled value
179
180 irq_disable ();
181 y = * pVehSpdOdom_vehspdctrl ;
182 irq_enable ();
183
184 y = pt1_calculate (&pt1 , y);
185 pid_controller (&pid , y , w , &u, - MOT_MAXVAL , MOT_MAXVAL);
186
187 if (u > 0) {
188 u_f = U_DEADBAND_POSITIVE ;
189 }
190 else if (u < 0) {
191 u_f = U_DEADBAND_NEGATIVE ;
192 }
193
194 u += u_f;
195
196 return u;
197 }
198
199 static void spdCtrl (float destSpeed)
200 {
201 destSpeed = MIN(destSpeed , MAX_SPEED);
202
203 // Here we first check if speed 0 was received .
204 // In this case we perform a fullstop with maximum brake power .
205 // This might have been implemented differently but there wasn ’t enough time at

↪→ this point .
206 // However this functionality is definitely required since when left out the PID

↪→ tries to smoothly reduce speed to 0
207 // which is not what we desire when trying to avoid a collision .
208 bool fullstop ;
209 if (destSpeed <= FLOAT_TOLERANCE)
210 fullstop = true ;
211 else
212 fullstop = false ;
213
214 if (! fullstop && lastFullstop)
215 {
216 motTrqTgtSrv = MOTOR_AFTER_FULLSTOP ;
217 pid_initialize (& pid);
218 }
219
220 lastFullstop = fullstop ;
221
222 if (fullstop)
223 {
224 motTrqTgtSrv = MOTOR_FULLSTOP ;
225 return ;

111

226 }
227
228 float change = 0; // value calculated by PID
229 float currSpeed = 0; // controlled value
230
231 irq_disable ();
232 currSpeed = ABS (* pVehSpdOdom_vehspdctrl);
233 irq_enable ();
234
235 // currSpeed = pt1_calculate (& pt1 , currSpeed);
236 pid_controller (&pid , currSpeed , destSpeed , & change , - MOT_MAXVAL , MOT_MAXVAL);
237
238 motTrqTgtSrv += change ;
239
240 if (motTrqTgtSrv > 0 && motTrqTgtSrv < U_DEADBAND_POSITIVE)
241 motTrqTgtSrv = U_DEADBAND_POSITIVE ;
242
243 motTrqTgtSrv = MIN(motTrqTgtSrv , MOTOR_LIMIT);
244 }
245
246 static void setThrottle (float throttle)
247 {
248 throttle = MIN(throttle , 1.0 f);
249 throttle = MAX(throttle , 0.0 f);
250
251 if (throttle == 0.0 f)
252 {
253 motTrqTgtSrv = MOTOR_FULLSTOP ;
254 return ;
255 }
256
257 motTrqTgtSrv = throttle ;
258 }

eict.h
1
2 /* * ***

↪→
3 * Unit in charge :
4 * @file eict .h
5 * @author Yoga
6 * $Date :: 2015 -05 -05 13:31:20 # $
7 *
8 * --
9 * SVN information of last commit :

10 * $Rev :: $
11 * $Author :: $
12 *
13 * --
14 *
15 * @brief This unit configures an input capture timer triggering on the edges of the

↪→ wheel encoder .
16 *
17 ***

↪→ */
18
19
20 # ifndef EICT_H_
21 # define EICT_H_
22
23 /* ************ Includes

↪→ ** */
24 # include "per/ hwallocation .h"
25

112

26 /* ************ Public typedefs
↪→ *** */

27
28 /* ************ Privat typedefs

↪→ *** */
29
30 /* ************ Macros and constants

↪→ ** */
31 /* ************ Public function prototypes

↪→ ** */
32 void eict_init (void);
33
34 void eict_getCounter (uint16_t * frontLeftEnc , uint16_t * frontRightEnc , uint16_t *

↪→ rearLeftEnc , uint16_t * rearRightEnc);
35
36 void eict_getCounter2 (uint16_t * rearLeftEnc , uint16_t * rearRightEnc);
37
38 # endif /* EICT_H_ */

eict.c
1 /* * ***

↪→
2 * Unit in charge :
3 * @file eict .h
4 * @author Yoga
5 * $Date :: 2015 -05 -05 13:31:20 # $
6 *
7 * --
8 * SVN information of last commit :
9 * $Rev :: $

10 * $Author :: $
11 *
12 * --
13 *
14 * @brief This unit configures an input capture timer triggering on the both edges of

↪→ the wheel encoder signal .
15 *
16 ***

↪→ */
17
18 /* ************ Includes

↪→ ** */
19 # include "brd/ startup / stm32f4xx .h"
20 # include "app/ config .h"
21 # include "per/eict.h"
22 # include "per/irq.h"
23
24
25 /* ************ Private typedefs

↪→ ** */
26 /* ************ Macros and constants

↪→ ** */
27 # define SR_INC_MAX 100
28
29 /* ************ Globale Variable

↪→ ** */
30
31 /* ************ Private static variables

↪→ ** */
32 static uint16_t frontLeftCapture = 0;
33 static uint16_t frontRightCapture = 0;
34 static uint16_t rearLeftCapture = 0;
35 static uint16_t rearRightCapture = 0;
36

113

37 static uint16_t rearLeftCapture2 = 0;
38 static uint16_t rearRightCapture2 = 0;
39
40 /* ************ Private function prototypes

↪→ *** */
41 static void gpio_config (void);
42
43 static void nvic_config (void);
44
45 /* ************ Public functions

↪→ ** */
46 void eict_init (void)
47 {
48
49 # ifdef WENC_V3
50 uint16_t polarity = TIM_ICPolarity_Falling ;
51 # else
52 uint16_t polarity = TIM_ICPolarity_Rising ;
53 # endif
54
55 TIM_ICInitTypeDef TIM_ICStructure ;
56
57 /* GPIO configuration */
58 gpio_config ();
59
60 /* nvic configuration */
61 nvic_config ();
62
63 # ifdef FOUR_WHEEL_ODOM
64 /* TIMER3 channel 1(PB4) Configuration : Input Capture mode */
65 TIM_ICStructure . TIM_Channel = TIM_Channel_1 ;
66 TIM_ICStructure . TIM_ICFilter = 0 x0;
67 TIM_ICStructure . TIM_ICPolarity = polarity ; /* rising and falling edges are used

↪→ as active edge */
68 TIM_ICStructure . TIM_ICPrescaler = TIM_ICPSC_DIV1 ; /* triggering on each edge

↪→ */
69 TIM_ICStructure . TIM_ICSelection = TIM_ICSelection_DirectTI ;
70 TIM_ICInit (WENC_FRONT_TIMER , & TIM_ICStructure);
71
72 /* TIMER3 channel 2(PB5) Configuration : Input Capture mode */
73 TIM_ICStructure . TIM_Channel = TIM_Channel_2 ;
74 TIM_ICStructure . TIM_ICFilter = 0 x0;
75 TIM_ICStructure . TIM_ICPolarity = polarity ; /* rising and falling edges are used

↪→ as active edge */
76 TIM_ICStructure . TIM_ICPrescaler = TIM_ICPSC_DIV1 ; /* triggering on each edge

↪→ */
77 TIM_ICStructure . TIM_ICSelection = TIM_ICSelection_DirectTI ;
78 TIM_ICInit (WENC_FRONT_TIMER , & TIM_ICStructure);
79 # endif
80
81 /* TIMER2 channel 4(PB11) Configuration : Input Capture mode */
82 TIM_ICStructure . TIM_Channel = TIM_Channel_4 ;
83 TIM_ICStructure . TIM_ICFilter = 0 x0;
84 TIM_ICStructure . TIM_ICPolarity = polarity ; /* rising and falling edges are used

↪→ as active edge */
85 TIM_ICStructure . TIM_ICPrescaler = TIM_ICPSC_DIV1 ; /* triggering on each edge

↪→ */
86 TIM_ICStructure . TIM_ICSelection = TIM_ICSelection_DirectTI ;
87 TIM_ICInit (WENC_REAR_TIMER , & TIM_ICStructure);
88
89 /* TIMER2 channel 2(PB3) Configuration : Input Capture mode */
90 TIM_ICStructure . TIM_Channel = TIM_Channel_2 ;
91 TIM_ICStructure . TIM_ICFilter = 0 x0;
92 TIM_ICStructure . TIM_ICPolarity = polarity ; /* rising and falling edges are used

↪→ as active edge */

114

93 TIM_ICStructure . TIM_ICPrescaler = TIM_ICPSC_DIV1 ; /* triggering on each edge
↪→ */

94 TIM_ICStructure . TIM_ICSelection = TIM_ICSelection_DirectTI ;
95 TIM_ICInit (WENC_REAR_TIMER , & TIM_ICStructure);
96 # ifdef FOUR_WHEEL_ODOM
97 /* TIMER3 enable counter */
98 TIM_Cmd (WENC_FRONT_TIMER , ENABLE);
99

100 /* Timer 3 enable the CC Interrupt request */
101 TIM_ITConfig (WENC_FRONT_TIMER , TIM_IT_CC1 | TIM_IT_CC2 , ENABLE);
102
103 /* Timer 3 clear CC Flag */
104 TIM_ClearFlag (WENC_FRONT_TIMER , TIM_IT_CC1 | TIM_IT_CC2);
105 # endif
106
107 /* TIMER2 enable counter */
108 TIM_Cmd (WENC_REAR_TIMER , ENABLE);
109
110 /* Timer 2 enable the CC Interrupt request */
111 TIM_ITConfig (WENC_REAR_TIMER , TIM_IT_CC4 | TIM_IT_CC2 , ENABLE);
112
113 /* Timer 2 clear CC Flag */
114 TIM_ClearFlag (WENC_REAR_TIMER , TIM_IT_CC4 | TIM_IT_CC2);
115 }
116
117 void eict_getCounter (uint16_t * frontLeftEnc , uint16_t * frontRightEnc , uint16_t *

↪→ rearLeftEnc , uint16_t * rearRightEnc)
118 {
119 irq_disable ();
120
121 * frontLeftEnc = frontLeftCapture ;
122 * frontRightEnc = frontRightCapture ;
123 * rearLeftEnc = rearLeftCapture ;
124 * rearRightEnc = rearRightCapture ;
125
126 /* clear capture Counter */
127 frontLeftCapture = 0;
128 frontRightCapture = 0;
129 rearLeftCapture = 0;
130 rearRightCapture = 0;
131
132 irq_enable ();
133 }
134
135 void eict_getCounter2 (uint16_t * rearLeftEnc , uint16_t * rearRightEnc)
136 {
137 irq_disable ();
138
139 * rearLeftEnc = rearLeftCapture2 ;
140 * rearRightEnc = rearRightCapture2 ;
141
142 /* clear capture Counter */
143 rearLeftCapture2 = 0;
144 rearRightCapture2 = 0;
145
146 irq_enable ();
147 }
148
149 # ifdef FOUR_WHEEL_ODOM
150 void TIM3_IRQHandler ()
151 {
152 if(TIM_GetITStatus (WENC_FRONT_TIMER , TIM_IT_CC1)) {
153 TIM_ClearITPendingBit (WENC_FRONT_TIMER , TIM_IT_CC1);
154 frontLeftCapture ++;
155
156 }

115

157 if(TIM_GetITStatus (WENC_FRONT_TIMER , TIM_IT_CC2)) {
158 TIM_ClearITPendingBit (WENC_FRONT_TIMER , TIM_IT_CC2);
159 frontRightCapture ++;
160 }
161 }
162 # endif
163
164 void TIM2_IRQHandler ()
165 {
166 if(TIM_GetITStatus (WENC_REAR_TIMER , TIM_IT_CC4)) {
167 TIM_ClearITPendingBit (WENC_REAR_TIMER , TIM_IT_CC4);
168 rearLeftCapture ++;
169 rearLeftCapture2 ++;
170 }
171 if(TIM_GetITStatus (WENC_REAR_TIMER , TIM_IT_CC2)) {
172 TIM_ClearITPendingBit (WENC_REAR_TIMER , TIM_IT_CC2);
173 rearRightCapture ++;
174 rearRightCapture2 ++;
175 }
176 }
177
178 /* ************ Private function *** */
179 static void gpio_config (void)
180 {
181
182 GPIO_InitTypeDef GPIO_InitStructure ;
183
184 /* GPIOB clock enable */
185 RCC_AHB1PeriphClockCmd (WENC_PIN_CLOCK , ENABLE);
186
187 /* Pin configuration for Timer 2 and 3 */
188 GPIO_InitStructure . GPIO_PuPd = GPIO_PuPd_UP ;
189 GPIO_InitStructure . GPIO_Speed = GPIO_Speed_100MHz ;
190 GPIO_InitStructure . GPIO_OType = GPIO_OType_PP ;
191 GPIO_InitStructure . GPIO_Mode = GPIO_Mode_AF ;
192 GPIO_InitStructure . GPIO_Pin = WENC_RR_CHAN_2_PIN | WENC_FL_CHAN_1_PIN |

↪→ WENC_FR_CHAN_2_PIN | WENC_RL_CHAN_4_PIN ;
193 GPIO_Init (WENC_PORT , & GPIO_InitStructure);
194
195 /* Configure the the GPIO pin as alternate function */
196 GPIO_PinAFConfig (WENC_PORT , WENC_FL_CHAN_1_AF_PIN , WENC_FL_CHAN_1_AF);
197 GPIO_PinAFConfig (WENC_PORT , WENC_FR_CHAN_2_AF_PIN , WENC_FR_CHAN_2_AF);
198 GPIO_PinAFConfig (WENC_PORT , WENC_RL_CHAN_4_AF_PIN , WENC_RL_CHAN_4_AF);
199 GPIO_PinAFConfig (WENC_PORT , WENC_RR_CHAN_2_AF_PIN , WENC_RR_CHAN_2_AF);
200 }
201
202 static void nvic_config (void)
203 {
204 NVIC_InitTypeDef NVIC_InitStructure ;
205
206 /* Timer 2 peripheral clock enable */
207 RCC_APB1PeriphClockCmd (WENC_REAR_TIM_CLOCK , ENABLE);
208
209 /* Timer 3 peripheral clock enable */
210 RCC_APB1PeriphClockCmd (WENC_FRONT_TIM_CLOCK , ENABLE);
211
212 # ifdef FOUR_WHEEL_ODOM
213 /* enable the TIM3 global Interrupt */
214 NVIC_InitStructure . NVIC_IRQChannel = TIM3_IRQn ;
215 NVIC_InitStructure . NVIC_IRQChannelCmd = ENABLE ;
216 NVIC_InitStructure . NVIC_IRQChannelPreemptionPriority = 0 x00;
217 NVIC_InitStructure . NVIC_IRQChannelSubPriority = 0 x01;
218 NVIC_Init (& NVIC_InitStructure);
219 # endif
220
221 /* enable the TIM2 global Interrupt */

116

222 NVIC_InitStructure . NVIC_IRQChannel = TIM2_IRQn ;
223 NVIC_InitStructure . NVIC_IRQChannelCmd = ENABLE ;
224 NVIC_InitStructure . NVIC_IRQChannelPreemptionPriority = 0 x00;
225 NVIC_InitStructure . NVIC_IRQChannelSubPriority = 0 x00;
226 NVIC_Init (& NVIC_InitStructure);
227 }

117

Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs
bzw. Täuschung eingeleitet wird.

Berlin, den December 18, 2018

119

	Introduction
	Related Work
	Structure of the Thesis

	System Architecture
	Chassis
	Hardware
	Camera
	Wheel Encoders
	Software Architecture
	Odroid
	STM32

	Deep Learning
	Motivation
	Artificial Neural Networks
	Learning
	Loss Function
	Optimization
	Backpropagation
	Overfitting

	Convolutional Neural Networks

	Autonomous Driving
	End-to-End Approach
	Preprocessing
	Neural Network Model
	Training
	Dataset
	Test Results

	Trajectory Prediction Approach
	Overview
	Odometry
	Neural Network Model
	Driving Model

	Results
	Wheel Encoder Anomaly
	Dataset
	Final Race
	Limits
	Possible Improvements

	Conclusion
	Code Snippets
	End-to-End Model Implementation using Keras
	Trajectory Prediction Model Implementation using Keras

	Trajectory Prediction Approach Parameters
	Source Code
	Odroid
	C++ Source Code
	Python Source Code

	STM32
	C Source Code

